Math, asked by faaizahbader65, 5 months ago

find the zeroes of
1
3 {x}^{2}  -  \sqrt{3} x - 2
2
4 {x}^{2}  + 5 \sqrt{2} x - 3
please answer fast...​

Answers

Answered by manissaha129
1

✍️{\huge{\red{\boxed{\purple{\underline{\mathfrak{ANSWER}}}}}}}\\</p><p>1) \: 3 {x}^{2}  -  \sqrt{3} x - 2 = 0 \\ 3 {x}^{2}  +  \sqrt{3} x - 2 \sqrt{3} x - 2 = 0 \\  \sqrt{3} x( \sqrt{3} x + 1) - 2 ( \sqrt{3} x + 1) = 0 \\ ( \sqrt{3}x+ 1)( \sqrt{3}x  - 2) = 0 \\ x =  \frac{( - 1)}{ \sqrt{3} }  \: and \: x =  \frac{2}{ \sqrt{3} }  \\ 2) \: 4 {x}^{2}  + 5 \sqrt{2} x - 3 = 0 \\ 4 {x}^{2}  + 6 \sqrt{2}x  -  \sqrt{2} x - 3 = 0 \\ 2 \sqrt{2} x( \sqrt{2} x + 3) - 1( \sqrt{2}  + 3) = 0 \\ ( \sqrt{2} x + 3)(2 \sqrt{2} x - 1) = 0 \\ x =  \frac{( - 3)}{ \sqrt{2} }  \: and \: x =  \frac{1}{2 \sqrt{2} } ✍️

1) x=(-1)/3 , 2/3 are the zeros of the equation.

2) x=(-3)/2 , 1/22 are the zeros of the equation.

Similar questions