Math, asked by sunitadevidevi7899, 9 months ago

Find the zeroes of 2√3x^2-5x+√3
verify the relationship between zeroes and coefficient
,​

Answers

Answered by Sharad001
55

Answer:-

\sf{Its \:  zeros  \: are  \:  \to \:  \frac{1}{ \sqrt{3} }  \:  \: and \:  \frac{ \sqrt{3} }{2} } \\  \:

To Find :-

→ Zeros and relationships between coefficient and zeros .

Explanation :-

We have ,

 \to \sf{2 \sqrt{3}  {x}^{2}  - 5x +  \sqrt{3}  = 0}

split the middle term

 \to \sf{ \: 2 \sqrt{3}  {x}^{2}  - (3 + 2)x +  \sqrt{3}  = 0} \\  \\  \to \sf{2 \sqrt{3}  {x}^{2}   - 3x - 2x +  \sqrt{3}  = 0} \\  \\  \to \sf{ 2 \sqrt{3}{x}^{2}  -  \sqrt{3}  \sqrt{3} x - 2x +  \sqrt{3}  = 0} \\    \\  \to \sf{\sqrt{3} x(2x -  \sqrt{3} ) - 1(2x -  \sqrt{3} ) = 0} \\  \\  \to \sf{ (2x -  \sqrt{3} )( \sqrt{3}x - 1) = 0} \\  \\   \bf{\underline{case \: (1)} \: if \: } \\  \\  \to \sf{\sqrt{3} x - 1 = 0} \\  \\  \to \sf{\sqrt{3} x = 1} \\  \\  \to  \boxed{\sf{ x =  \frac{1}{ \sqrt{3} } }} \\  \\

\bf{\underline{case \: (2)} \: if \: } \\  \to \sf{ 2x -  \sqrt{3}  = 0} \\  \\  \to \sf{2x =  \sqrt{3} } \\  \\  \to  \boxed{\sf{x =  \frac{ \sqrt{3} }{2} }}

 \sf{Its \:  zeros  \: are  \:  \to \:  \frac{1}{ \sqrt{3} }  \:  \: and \:  \frac{ \sqrt{3} }{2} } \\

Relation between zeros and coefficients :-

Here ,

 \to \sf{sum \: of \: zeros =  \frac{ - b}{a}  =  \frac{5}{2 \sqrt{3} } } \\  \\  \:  \:  \:  \:  \frac{1}{ \sqrt{3} }  +  \frac{ \sqrt{3} }{2}  =  \frac{5}{2 \sqrt{3} }  \\  \\  \:  \:  \:  \:  \frac{2 + 3}{2 \sqrt{3} }  =  \frac{5}{ 2\sqrt{3} }  \\  \\  \:  \:  \boxed{ \:  \:  \frac{5}{2 \sqrt{3} }  =  \frac{5}{2 \sqrt{3} } }

and ,

 \sf{product \: of   \: zeros =  \frac{c}{a}  =  \frac{ \sqrt{3} }{2 \sqrt{3} } } \\  \\  \: \:  \:  \:  \:  \frac{1}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{2}  =  \frac{ \sqrt{3} }{2 \sqrt{3} }  \\  \\  \:  \:  \:  \:  \:  \boxed{ \frac{1}{2}  =  \frac{1}{2} }

hence verified .

Answered by VishnuPriya2801
17

Answer:-

Given polynomial => 2√3x² - 5x + √3 = 0

By splitting the middle term,

2√3x² - 2x - 3x + √3 = 0

2x(√3x - 1) - √3(√3x - 1) = 0

(2x - √3)(√3x - 1) = 0

2x - √3 = 0

2x = √3

x = √3/2

√3x - 1 = 0

√3x = 1

x = 1/√3

Verification:-

Let , a = 2√3 ; b = - 5 and c = √3

We know that,

Sum of the roots = - b/a

√3/2 + 1/√3 = -(-5)/2√3

By taking LCM,

(3 + 2)/2√3 = 5/2√3

5/2√3 = 5/2√3

Product of zeroes = c/a

(√3/2)(1/√3) = √3/2√3

1/2 = 1/2

Hence, Verified.

Similar questions