Math, asked by amarjitsandhu677, 7 months ago

find the zeroes of 2x square -3x+1 and verify the relationship between the zeroes and the coefficients ​

Answers

Answered by rajeevr06
1

Answer:

 {x}^{2}  - 3x + 1 = 0 \:  \: has \: zeros \:  \alpha  \:  \: and \:  \beta

 \alpha  +  \beta  = 3 \:  \:  \:  \: and \:  \:  \:  \alpha  \beta  = 1

now,

x =  \frac{3 +  \sqrt{9 - 4} }{2}  \:  \: or \:  \:  \frac{3  -  \sqrt{9 - 4} }{2}

x =  \frac{3 +  \sqrt{5} }{2}  \:  \: or \:  \:  \frac{3 -  \sqrt{5} }{2}

 \frac{3 +  \sqrt{5} }{2}  +  \frac{3 -  \sqrt{5} }{2}  =  \frac{3 +  \sqrt{5} + 3 -  \sqrt{5}  }{2}  = 3 =  \alpha  +  \beta

 \frac{3 +  \sqrt{5} }{2}  \times  \frac{3 -  \sqrt{5} }{2}  =  \frac{9 - 5}{2 \times 2}  = 1 =  \alpha  \beta

Similar questions