Math, asked by sourabkumarnath2434, 1 year ago

Find the zeroes of 4 root 3x2 +5x -2 root 3 and verify the relationship between the zeroes and coefficients of the polynomial

Answers

Answered by PiyushKhaire
141
I hope it will help you

Please mark it as brainliest!!
Attachments:
Answered by codiepienagoya
40

Given:

\bold{4\sqrt{3}x^2+ 5x -2 \sqrt{3} =0}

To prove:

Find: zeroes and coefficients.

Solution:

\Rightarrow 4\sqrt{3}x^2+ 5x -2 \sqrt{3} =0\\\\

Compare the above value with ax^2+ bx+c =0:

\Rightarrow a=4\sqrt{3} \\\\\Rightarrow b= 5 \\\\\Rightarrow c= -2\sqrt{3} \\\\

Solve  above equation.

\Rightarrow 4\sqrt{3}x^2+ 5x -2 \sqrt{3} =0\\\\\Rightarrow 4\sqrt{3}x^2+ (8 - 3)x -2 \sqrt{3} =0\\\\\Rightarrow 4\sqrt{3}x^2+ 8x-3x -2 \sqrt{3} =0\\\\\Rightarrow 4x(\sqrt{3}x+ 2) -\sqrt{3}(\sqrt{3}x +2) =0\\\\\Rightarrow (4x-\sqrt{3})(\sqrt{3}x +2) =0\\\\

\Rightarrow (\sqrt{3}x+ 2)  = 0  \ \ \  or \ \ \ \ (4x-\sqrt{3}) =0 \\\\\Rightarrow \sqrt{3}x= - 2  \ \ \  or \ \ \ \ 4x=\sqrt{3}\\\\\Rightarrow x= - \frac{2}{\sqrt{3}}  \ \ \  or \ \ \ \ x=\frac{\sqrt{3}}{4}\\\\

zeroes and coefficients:

Formula:

\bold{\alpha + \beta = \frac{-b}{a}} \\\\

\Rightarrow \frac{-2}{\sqrt{3}} + \frac{\sqrt{3}}{4} = \frac{-5}{4\sqrt{3}}\\\\\Rightarrow \frac{-8+3}{4\sqrt{3}} = \frac{-5}{4\sqrt{3}}\\\\\Rightarrow \frac{-5}{4\sqrt{3}} = \frac{5}{4\sqrt{3}}\\\\

Formula:

\bold{\alpha \cdot \beta = \frac{c}{a}}

\Rightarrow \frac{-2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{4} = \frac{- 2\sqrt{3}}{4\sqrt{3}} \\\\\Rightarrow \frac{-2\sqrt{3}}{4\sqrt{3}}= \frac{- 2\sqrt{3}}{4\sqrt{3}} \\\\

Hence prove zeroes and coefficients are the polynomial.

Similar questions