Find the Zeroes of Polynomials below and make Relationship with Zeroes and Coefficients.
(i) P(X) = 2x² + X - 6
(ii) P(X) = 3x² -5x +2
(iii) P(X) = 3x²-x + 2
(iv) P(X) = 2x² + 45x -47
(v) P(X) = 2x² + 5x -3
(vi) P(X) = x² - 5x + 6
PLS Answer these, I will Mark as Brainliest.
Answers
Answer:
(i) P(X) = 2x² + X - 6
= 2 – 4 + 3 – 6 = 0
= 2 (-2) + 3 (-2) = 0
= (2 + 3) = 0
= ( – 2) = 0
= ∝ = -3/2 and β = 2
= ∝ + β = -3 x 2 = -6 = c/a
= a + b + c = 0
= 2 – – 6 = 0
= ∝ + β = ½ - 2/3 = -1/6
(ii) P (x) = 3x2-5x+2
Sol: = 3 = 3 – 2 + 2
= 3 (-1) -2 (-1)
= (-1) (3-2) = 0
= (-1) = 0
= = 1
= 3 -2 = 0
= 3 – 2 = 0
= 3 = 2
= = 2/3
=> Sum of Zeroes
= 1/3 + 2/3 = 3 + 2/3 = 5/3
=> Product of Zeroes
= 1 x 2/3 = 2/3
= a = 3, b = -5, c = 2
= ∝ + β = -b/a
= ∝ + β = -b/a
= ∝ + β = -(-5)/3 = 5/3
= ∝β = c/a = 2/3
(iii) P (x) = 3x2 – x + 2
Sol: = 3 – 3 + 2 -2
= 3 (-1) (3 + 2) = 0
= ( - 1) (3 + 2) = 0
= ( - 1) = 0
= = 1
= (3+2) = 0
= (3) = -2/3
=> Sum of Zeroes
= = 1
= = -2/3
= ∝ + β = 1 – 2/3
= 3-2/3 = 1/3
= ∝β = 1/3
= ∝β = (1) (-2)
= -2/3
(iv) P (x) = 2x2 + 45x – 47
= 2 + 45 – 47 = 0
= 2 + 47 – 2 – 47 = 0
= (2+47) – 1 (2 + 47) = 0
= ( - 1) = 0
= = 1
= (2+ 47) = 0
= 2 = -47
= = -57/2
∴ ∝ = 1, β = -47/2
=> Sum of Zeroes = (1) (-47/2)
= 1 -47/2 = 46/2
= Product of Zeroes = (1) (-47/2)
= p(x) = 2x2 + 45x – 47
= a + b - c
= a = 2, b = 45, c = -47
= ∝ + β = -b/a
= -45/2 = 22.5
= ∝β = c/a
= (1) (-45) = -47/2 =- 23.5
(v) P(X) = 2x² + 5x -3
= 2 + 6 - - 3
= 2 (+3) -1 (+3)
= (2-1) = 0
= 2 = 1
= = 1/2
= (+3) = 0
= ( = -3)
= = 1/2
∴ ∝ = 1/2, β = -3
= ∝ + β = -b/a
= 1/2 + (-3) = -5/2
= -6 + 1/2 = -5/2
= -5/2
= ∝β = c/a
= 1/2 x -3 = -3/2
= -3/2
(vi) P(X) = x² - 5x + 6
= - 5x + 6
= + - + 6
= ( + 1) -6 ( + 1)
= ( - 6) = 0
= = 6
= ( + 1) = 0
= ( = -1)
=> Sum of Zeroes = a + b = -b/a
= 6 - 1 = - (-5)/1
= (5 = 5)
=> Product of Zeroes = ab = c/a
= (6) (-1) = 6
= (6 = 6)