Math, asked by ravikumar2000, 9 months ago

Find the Zeroes of Polynomials below and make Relationship with Zeroes and Coefficients.
(i) P(X) = 2x² + X - 6
(ii) P(X) = 3x² -5x +2
(iii) P(X) = 3x²-x + 2
(iv) P(X) = 2x² + 45x -47
(v) P(X) = 2x² + 5x -3
(vi) P(X) = x² - 5x + 6
PLS Answer these, I will Mark as Brainliest.​

Answers

Answered by bhavani2000life
2

Answer:

(i) P(X) = 2x² + X - 6

= 2x^2 – 4x\\ + 3x – 6 = 0

= 2x (x-2) + 3 (x-2) = 0

= (2x + 3) = 0    

= (x – 2) = 0

= ∝ = -3/2 and β = 2

= ∝ + β = -3 x 2 = -6 = c/a

= ax^2 + bx + c = 0

= 2x^2x – 6 = 0

= ∝ + β = ½ - 2/3 = -1/6

(ii) P (x) = 3x2-5x+2

Sol: = 3x^2 = 3x – 2x + 2

= 3x (x-1) -2 (x-1)

= (x-1) (3x-2) = 0

= (x-1) = 0      

= x = 1

= 3x -2 = 0

= 3x – 2 = 0

= 3x = 2

= x = 2/3

=> Sum of Zeroes  

= 1/3 + 2/3 = 3 + 2/3 = 5/3

=> Product of Zeroes  

= 1 x 2/3 = 2/3

= a = 3, b = -5, c = 2

= ∝ + β = -b/a

= ∝ + β = -b/a

= ∝ + β = -(-5)/3 = 5/3

= ∝β = c/a = 2/3

(iii) P (x) = 3x2 – x + 2

Sol: = 3x^2 – 3x + 2x -2

= 3x (x-1) (3x + 2) = 0

= (x - 1) (3x + 2) = 0

= (x - 1) = 0

= x = 1

= (3x+2) = 0

= (3x) = -2/3

=> Sum of Zeroes  

= x = 1

= x = -2/3

= ∝ + β = 1 – 2/3

= 3-2/3 = 1/3

= ∝β = 1/3

= ∝β = (1) (-2)

= -2/3

(iv) P (x) = 2x2 + 45x – 47

= 2x^2 + 45x – 47 = 0

= 2x^2 + 47x – 2x – 47 = 0

= x (2x+47) – 1 (2x + 47) = 0

= (x - 1) = 0

= x = 1

= (2x+ 47) = 0

= 2x = -47  

= x = -57/2

∴ ∝ = 1,  β = -47/2

=> Sum of Zeroes = (1) (-47/2)

= 1 -47/2 = 46/2

= Product of Zeroes = (1) (-47/2)

= p(x) = 2x2 + 45x – 47

= ax^2 + bx - c

= a = 2, b = 45, c = -47

= ∝ + β = -b/a

= -45/2 = 22.5

= ∝β = c/a

= (1) (-45) = -47/2 =- 23.5

(v) P(X) = 2x² + 5x -3

= 2x^2 + 6x - x - 3

= 2x (x+3) -1 (x+3)

= (2x-1) = 0

= 2x = 1

= x = 1/2

= (x+3) = 0

= (x = -3)

= x = 1/2

∴ ∝ = 1/2, β = -3

= ∝ + β = -b/a

= 1/2 + (-3) = -5/2

= -6 + 1/2 = -5/2

= -5/2

= ∝β = c/a

= 1/2 x -3 = -3/2

= -3/2

(vi) P(X) = x² - 5x + 6

= x^2 - 5x + 6

= x^2 + x - 6x + 6

= x (x + 1) -6 (x + 1)

= (x - 6) = 0

= x = 6

= (x + 1) = 0

= (x = -1)

=> Sum of Zeroes = a + b = -b/a

= 6 - 1 = - (-5)/1

= (5 = 5)

=> Product of Zeroes = ab = c/a

= (6) (-1) = 6

= (6 = 6)

==>HOPE YOU UNDERSTOOD THIS!

Similar questions