Math, asked by Rkaran2862, 10 months ago

Find the zeroes of quadratic polynomial x^2 -5 .also verify relation btw zeroes and coefficients

Answers

Answered by rukumanikumaran
3

Answer:

hope this helps u

Step-by-step explanation:

x^2= 5

x= √5

x= ± √5

we consider alpha(α)= √5

                       beta(β)=  - √5

alpha + beta= - b/a

√5 +(-√5)= -0/1

0=0

alphabeta= c/a

√5*-√5= -5/1

-5= -5

Answered by haritha574
1

Answer:

 {x}^{2}  - 5

  • LET P(X)=0
  •   {x}^{2}  - 5 = 0
  •  {x}^{2}  = 5
  • x =   \sqrt[ +  - ]{5}
  •  \alpha  =   \sqrt{5}
  •  \beta  =  -  \sqrt{5}
  •  {x}^{2} co.efficient = 1
  • X Co-efficient =o
  • constant = C = -5
  • SUM OF ZEROES =alpha+beta= -b/a
  • 0/1=0.
  •  \alpha  +  \beta  =  -  \sqrt{5}  +  \sqrt{5}  = 0
  • PRODUCT OF ZEROES =alpha(beta)=c/a
  •  \alpha  \times  \beta  =  -  \sqrt{5} \times  \sqrt{5}   =  - 5
  • C/A= -5/1= -5

IF IT IS HELPFUL TO YOU PLS MARK ME AS BRAINLIST

Similar questions