Math, asked by arejaul025, 2 months ago

find the zeroes of quadratic polynomid +1-15 and verify the relationship between zeroes and coefficients​

Answers

Answered by mouryaswadha
0

Answer:-

Factorize the equation, we get t=±15

Factorize the equation, we get t=±15So, the value of t2−15 is zero when t+15=0,t−15=0, i.e., when t=15 or t=−15.

Factorize the equation, we get t=±15So, the value of t2−15 is zero when t+15=0,t−15=0, i.e., when t=15 or t=−15.Therefore, the zeros of t2−15 are ±15.

Factorize the equation, we get t=±15So, the value of t2−15 is zero when t+15=0,t−15=0, i.e., when t=15 or t=−15.Therefore, the zeros of t2−15 are ±15.Now,

Factorize the equation, we get t=±15So, the value of t2−15 is zero when t+15=0,t−15=0, i.e., when t=15 or t=−15.Therefore, the zeros of t2−15 are ±15.Now,⇒Sum of zeroes = 15−15=0=−10=0=−Coefficient  of  t2Coefficient  of  t

Factorize the equation, we get t=±15So, the value of t2−15 is zero when t+15=0,t−15=0, i.e., when t=15 or t=−15.Therefore, the zeros of t2−15 are ±15.Now,⇒Sum of zeroes = 15−15=0=−10=0=−Coefficient  of  t2Coefficient  of  t⇒Product of zeros = 15×−15=−15=1−15=Coefficient  of  t2Constant  term

Necessary:-

To mark me as brainliest and thanks me if you like my answer also vote me as per ur choice.Hope my answer will be helpful to you!!!!

Similar questions