Math, asked by xXSHARKXx, 1 month ago

Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials: 4x²+5√2x-3​

Answers

Answered by LaCheems
83

{\huge{\fbox{\colorbox{black}{\color{hotpink}{\textbf{\textsf{Answer:-}}}}}}}

{ \sf{4 {x}^{2}  + 5 \sqrt{2} x - 3 = 0}}\\  \\{ \sf{ 4 {x}^{2}  + 6 \sqrt{2} x -  \sqrt{2} x - 3 = 0 }}\\  \\ { \sf{2 \sqrt{2} x( \sqrt{2} x  + 3) - 1( \sqrt{2}x + 3) = 0 }}  \\  \\ { \sf{( \sqrt{2}x + 3)(2 \sqrt{2}x - 1) = 0 }} \\  \\{ \sf{ \blue{ x = \frac{ - 3}{ \sqrt{2} }  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{1}{2 \sqrt{2} }  }}} \\  \\ \\  {  \underline{ \sf{ \red{Verification : - }}}} \\  \\ { \sf{1) \:  \: \alpha  +  \beta =  \frac{ - b}{a} }}  \\  \\  { \sf{\frac{ - b}{a}  =  \frac{ - 5 \sqrt{2} }{4}}} \\  \\  { \sf{ = >   \frac{ - 3}{ \sqrt{2} }  +  \frac{1}{2 \sqrt{2} }  =  \frac{  - 6 \sqrt{2} +  \sqrt{2}  }{4} }}  \\  \\ { \sf{ \frac{ - 5 \sqrt{2} }{4} }} \\  \\ { \sf{ \red{Hence \:  \: Verified}}} \\  \\ { \sf{2) \alpha . \beta  = \frac{c}{a} }} \\  \\  { \sf{\frac{c}{a}  =  \frac{ - 3}{4}}}   \\  \\ { \sf{ \frac{ - 3 }{ \sqrt{2} }  \times  \frac{1}{2 \sqrt{2} }  =  \frac{ - 3}{4}}} \\  \\ { \sf{ \red{Hence \:  \: Verified}}}

HOPE IT HELPS

MARK BRAINLIEST PLS :)

Similar questions