Math, asked by neha0010, 1 month ago

Find the Zeroes of the following quadratic polynomial and verify the relationship between
the zeroes and the coefficients

x2 - 2x - 8​

Answers

Answered by Evilhalt
481

\large\sf \underline{ \color{red}{Answer : -}}

\rm \sf{Zeroes \:  of \:  the \:  quadratic  \: polynomial \:  {x}^{2} - 2x - 8  \:  is \:  - 4 \: and \: 2}

{ \boxed {\sf{ \color{purple}{solution : }}}}

\rm{given \: equation \:  {x}^{2}  - 2x - 8}

  • \leadstocalculate the Zeroes of the polynomial
  •  \leadsto Apply the method of splitting the middle term

  \sf{ :  \implies \:  {x}^{2}  - (4x - 2x) - 8 = 0}

 \sf{ :  \implies \:  {x}^{2}  - 4x + 2x - 8 = 0}

\sf{ :  \implies \: x(x - 4) + 2(x - 4) = 0}

  \sf{ :  \implies \: ( x - 4)(x + 4) = 0}

  \sf{ :  \implies \: x = 4  \:,  x =  - 2}

  • Therefore , two Zeroes of this polynomial are 4 , - 2
  • Now ,

  • Verífy the Zeroes as the sum of zeroes and product of Zeroes.

 \sf \leadsto \: { {x}^{2}  - 2x - 8} \:  \:  \:  \:  \:  \:  \:  \: .. \:  \tiny{eq.1}

  • Comparing equation 1 with general form of quadratic polynomial , then

 \sf{(a = 1),(b =  - 2),(c =  - 8)}

  • sum of zeroes = LHS

 \mapsto \:{\boxed{ \sf{ =  \: sum \: of \: zeroes \:  =  \alpha  +  \beta} }}

 \circ \: \sf{substitute \: the \: zeroes \:  (\alpha  = 4 )\: and  \: (\beta  =  - 2)}

 \longrightarrow  \sf {LHS = 4 + ( - 2 ) = 2 }

 \longrightarrow  \sf {RHS = \frac{ - b}{c} }

  • substitute the values a = 1 and b = -2

 \leadsto  \: \sf{ \frac{ - b}{a}  =  \frac{ - ( - 2)}{1}}

 \leadsto  \: \sf{ \frac{ - b}{a}  = 2}

 \sf{ \therefore \: LHS =  RHS}

  • product of zeroes = LHS

 \mapsto \:{\boxed{ \sf{  = product \: of \: zeroes \:  =  \alpha  \times  \beta }}}

 \circ \: \sf{substitute \: the \: zeroes \:  (\alpha  = 4 )\: and  \: (\beta  =  - 2)}

\implies \:  \: \sf{( \alpha  = 4) \: and \: ( \beta  =  - 2)}

 \leadsto \sf{4 \times ( - 2)}

 \leadsto { \boxed{\sf{ - 8}}}

 \longrightarrow  \sf {RHS = \frac{c}{a} }

  • substitute the values a = 1 and c = - 8

 \leadsto  \: \sf{ \frac{c}{a}  =  \frac{ - ( - 8)}{1}}

 \leadsto  \: \sf{ \frac{c}{a}  =  - 8}

 \sf{ \therefore \: LHS =  RHS}

Hence

the sum of Zeroes and product of Zeroes are verified .

 \circ \:  { \boxed{ \color{red}\sf{Zeroes  \: of \:  quadratic \:  polynomial \:  \:  {{x}^{2} - 2x - 8  \: is \: - 4 , \: 2}}}}

Answered by girllikeapearl41
14

♡ AnSweR ♡

✯..x2 - 2x - 8..✯

✯..f(x)=x 2 −2x−8

⇒f(x)=x 2−4x+2x−8

⇒f(x)=x(x−4)+2(x−4)]

⇒f(x)=(x−4)(x+2)

✯..Zeros of f(x) are given by f(x) = 0

⇒x 2 −2x−8=0

⇒(x−4)(x+2)=0

⇒x=4 or x=−2

So, α=4 and β=−2

∴ sum of zeros =α+β=4−2=2

Also, sum of zeros = Coefficient of x

Coefficient of x²

= -(-2) =2

1

So, sum of zeros =α+β= −Coefficient of x2

Coefficient of x

Now, product of zeros =αβ=(4)(−2)=−8

Also, product of zeros = Constant terms

Coefficient of x²

= 1−8 =−8

∴ Product of zeros = Coefficient of x2

Constant term

=αβ

Similar questions