Find the zeroes of the following quadratic polynomials and verify the relationship between
the zeroes and the coefficients.
(i) x² - 2x - 8
(ii) 4s2- 4s+1
(iii) 6x2 -3-7x
(iv) 4u2 +8u
(v) t2-15
(vi) 3x2 -x-4
Answers
Step-by-step explanation:
(1) x² - 2x -8
x² - 4x + 2x - 8
x(x-4).+2(x-4)
(x+2)(x-4)=0
x = -2 and 4
verification
sum of zeroes(α+β) = -b/a
-2 + 4 = -(-2)/1
2 = 2
product of zeroes (αβ) = c/a
-2 × 4 = -8/1
-8 = -8
(2) 4s² - 4s + 1
4s² -2s -2s +1
2s(2s - 1).-1(2s - 1)
(2s - 1)(2s - 1)
s = 1/2 and 1/2
verification
α+β = -b/a
1/2 + 1/2 = -(-4)/4
2/2 = 4/4
1 = 1
αβ = c/a
1/2 × 1/2 = 1/4
1/4 = 1/4
(3) 6x² -7x -3
6x² - 9x + 2x - 3
3x(2x-3).+1(2x-3)
(3x + 1)(2x-3) = 0
x = -1/3 and 3/2
verification
α + β = -b/a
-1/3 + 3/2 = -(-7)/6
(-2+9)/6 = 7/6
7/6 = 7/6
αβ = c/a
-1/3 × 3/2 = -3/6
-1/2 = -1/2
(4) 4u² + 8u
4u(u+2) = 0
u = 0 and -2
verification
α + β = -b/a
o + (-2) = -8/4
-2 = -2
αβ = c/a
0 × (-2) = 0/4
0 = 0
(5) t² - 15 = 0
t² = 15
t = ±√15
t = +√15 , -√15
verification
α + β = -b/a
-√15 + √15 = 0/1
0 = 0
αβ = c/a
(-√15) × (√15) = -15/1
-15 = -15
(6) 3x² - x - 4
3x² -4x + 3x - 4
x(3x-4).+1(3x-4)
(x+1)(3x-4) = 0
x = -1 , 4/3
verification
α + β = -b/a
-1 + 4/3 = -(-1)/3
(-3+4)/3 = 1/3
1/3 = 1/3
αβ = c/a
-1 × 4/3 = -4/3
-4/3 = -4/3
Formula Used :-
Solution :-
And,
The zeroes of the polynomial is - 2 and 4.
VERIFICATION
Given equation :
x² - 2x - 8
where,
a = 1
b = - 2
c = - 8
Sum of the zeroes :
Again,
Product of the zeroes :
Then,
Hence, Verified.
And,
The zeroes of the polynomial is ½ and ½.
VERIFICATION
Given equation :
4s² - 4s + 1
where,
a = 4
b = - 4
c = 1
Sum of the zeroes :
Again,
Product of the zeroes :
Hence Verified.
And,
The zeroes of the polynomial is - 1/3 and 3/2.
VERIFICATION
Given equation :
6x² - 7x - 3
where,
a = 6
b = - 7
c = - 3
Sum of the zeroes :
Again,
Product of the zeroes :
Hence, Verified.
iv) 3x² - x - 4
↦ f(x) = 3x² - x - 4
⇒ 3x² - (4 - 3)x - 4 = 0
⇒ 3x² - 4x + 3x - 4 = 0
⇒ x(3x - 4) + 1(3x - 4) = 0
⇒ (3x - 4)(x + 1) = 0
⇒ 3x - 4 = 0
⇒ 3x = 4
➠ x = 4/3
And
⇒ x + 1 = 0
➠ x = - 1
∴ The zeroes of the polynomial is 4/3 and - 1
✪ VERIFICATION
Given equation :
➲ 3x² - x - 4
where,
a = 3
b = - 1
c = - 4
★ Sum of the zeroes :
⇒ 4/3 + - 1 = - (- 1)/3
⇒ 4 - 3/3 = 1/3
➦ 1/3 = 1/3
Again,
★ Product of the zeroes :
⇒ 4/3 × (- 1) = - 4/3
➦ - 4/3 = - 4/3
Hence, Verified.
v) t² - 15
↦ f(x) = t² - 15
⇒ t² - 15 = 0
⇒ (t)² - (√15)² = 0
⇒ t² - (√15)² = 0
⇒ (t + √15) (t - √15) = 0
⇒ t + √15 = 0
➠ t = - √15
⇒ t - √15 = 0
➠ t = √15
∴ The zeroes of the polynomial is √15 and - √15.
✪ VERIFICATION
Given equation :
➲ t² - 15
where,
a = 1
b = 0
c = - 15
★ Sum of the zeroes :
⇒ √15 + (- √15) = - (0/1)
➦ 0 = 0
★ Product of the zeroes :
⇒ √15 × (- √15) = - 15/1
➦ - 15 = - 15
Hence, Verified:-