Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes
and the coefficients :
p
(
x) =
x²
– 2
x – 35
Answers
Answer:
I disnt understand your question dear..
Answer:
i) f(x)=x
2
−2x−8
=(x−4)(x+2)
Zeroes: −2,4
Sum of zeroes: −2+4=2
Product of zeroes:−2(4)=−8
ii) g(s)=4s
2
−4s+1
=(2s−1)
2
Zeroes:
2
1
,
2
1
Sum of zeroes :
2
1
+
2
1
=
a
−b
=−
4
(−4)
=1
Product of zeroes:
2
1
⋅
2
1
=
a
c
=
4
1
ii)h(t)=t
2
−15=(t−
1
5)(t+
1
5)
Sum of zeroes:
1
5+(−
1
5)=0
Product of zeroes: (
1
5)(−
1
5)=−15=
a
c
iv) 6x
2
−3−7x
Zeroes :
2
3
,
3
−1
Sum of zeroes:
2
3
−
3
1
=
6
7
=
a
−b
Product of zeroes:
2
3
3
−1
=
6
−3
=
a
c
v) p(x)=x
2
+2
2
−6
=(x−
6−2
2
)(x+
6−2
2
)
Zeroes: −
6−2
2
,
6−2
2
Sum of zeroes:
6−2
2
−
6−2
2
=0=
a
−b
Product of zeroes: (
6−2
2
)(−
6−2
2
)=−6+2
2
=
a
c
vi) q(x)=
3
x
2
+10x+7
3
Zeroes:−
3
,
3
−7
Sum of zeroes: −(
3
+
3
7
)=
3
−10
=
a
−b
Product of zeroes: (−
3
)(−
3
7
)=7=
3
7
3
=
a
c
vii) f(x)=x
2
−(
3
+1)x+
3
Zeroes: 1,
3
Sum of zeroes: 1+
3
=
a
c
Product of zeroes: 1×
3
=
3
=
a
c
viii)g(x)=a(x
2
+1)−x(a
2
+1)=ax
2
−(a
2
+1)x+a
Zeroes: a,
a
1
Sum of zeroes: a+
a
1
=
a
(a
2
+1)
=
c
′
b
′
Product of zeroes: a×
a
1
=1=
a
a
=
a
′
c
′
I hope that it will help you and mark me as the brainliest