Math, asked by mohankumar41155, 1 month ago

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. 3x^2-x-4 . find alpha + beeta and alpha×beeta​

Answers

Answered by najab43
1

Answer:

please mark me as brainlists

Attachments:
Answered by yakshitakhatri2
2

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge\colorbox{lightgreen}{ ❛Answer❜} \\  \\  \\  \\ {\underline{\sf{\pink{∴ \: 3 {x}^{2}  - x - 4 = 0}}}} \\ {\sf{∴ \: a {x}^{2}   + bx + c = 0}} \\  {\sf{\blue{∴ \: a = 3, \: b =  - 1, \: c =  - 4}}} \\ \\  {\sf{\purple{∴ \: 3 {x}^{2} - 4x + 3x - 4 = 0 }}} \\ {\sf{→ \: x(3x - 4) + 1(3x - 4) = 0}} \\ {\sf{→ \: (3x - 4)(x + 1) = 0}} \\ {\boxed{\underline{\underline{\bf{\orange{∴ \: x = \frac{4}{3}  }}}}}} \:  \:  \: {\sf{or}} \:  \:  \: {\boxed{\underline{\underline{\bf{\orange{∴ \: x =  - 1 }}}}}} \\  \\  \\  \\  \\  \\  {\underline{\sf{\green{Verification \: ✓}}}} \\  \\ {\boxed{\sf{\orange{sum \: of \: zeroes =  \frac{ - b}{a}  =  \frac{ - ( - 1)}{3}  =  \frac{1}{3} }}}} \\  \\ {\boxed{\sf{\orange{product \: of \:zeroes =  \frac{c}{a}   =  \frac{ - 4}{3} }}}} \\  \\

────━━━━━━━━━━━━━━━━━────

Mark as brainliest ✔

Similar questions