find the zeroes of the polynomial 2x^3-9x^2+x+12
Answers
Step-by-step explanation:
Greetings,
The answer to your question is typed below↓...
____________________________________________
Given:
2x³ - 9x² + x + 12
____________________________________________
Solution:
Use hit and trial method..
take a factor x = -1
⇒ f(x)=-1
Substituting the equation we get..
⇒ f(1)= 2(-1)³ - 9(-1)² + (-1) + 12
⇒ -2+9-1+12
⇒ 9 - 9
⇒0
∴ (x+1) is a factor of 2x³ - 9x² + x +12
Now we divide 2x³ - 9x² + x +12 by (x+1)
2x³ - 11x + 12
x+1) 2x³ - 9x² + x +12
- 2x³ - 2x²
-11x² +x
+11x² +11x
12x + 12
-12x - 12
×
By dividing we get quadratic: 2x³ - 11x + 12
We find roots by solving for x;
x = [-b +(or) - √( b² - 4ac)]/ 2a
x = [ 11 +(or) - √ (121- 96)]/4
x = [ 11 +(or) - √25]/4
we get x =4 or x = 3/2;
therefor (x+1),(x-4) and (2x-3) are all factors of 2x³ - 9x² + x + 12.
____________________________________________
Ps.: Enjoy ;)