Math, asked by parasshah80, 1 year ago

find the zeroes of the polynomial x*square-2x-8 and verify the relation between the coefficients and the zeroes of the polynomial

Answers

Answered by Anonymous
7

  {x}^{2}  - 2x - 8

 {x}^{2}  - 4x + 2x - 8

x(x - 4) + 2(x - 4)

(x + 2)(x - 4)

\large{verification}

x =  - 2

x =  + 4

 \alpha  +  \beta  =  - 2 + 4 = 2 =  \frac{ - (coeficientofx}{coeficientofxsquare}  =   \frac{ - ( - 2)}{1}  = 2

 \alpha  \times  \beta  =  - 2 \times 4 =  - 8 =  \frac{constant \: term}{coeficent \: of \: xsquare}  =   \frac{ - 8}{1 }  =  - 8

\large{letsrock}

Answered by Anonymous
26

\Large{\underline{\underline{\bf{Answer:-}}}}

 {x}^{2}  - 2x - 8 \\ \\   {x}^{2}   - 2x  - 8 = 0 \\ \\   {x}^{2}  - 4x + 2x - 8 \\ \\  x(x - 4)2(x - 4)  \\ \\ (x + 2)(x - 4) \\ \\  x + 2 = 0 \\ \\  x =  - 2 \\  \\ x - 4 = 0 \\  \\ x = 4

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Let the zeroes of the polynomial be

 \alpha  \: and \:  \beta

sum \: of \: zeroes \: ( \alpha  \: and \:  \beta ) =  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } \\ \\  - 2 + 4 =  \frac{2}{1 }  \\ \\ 2 = 2

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

product \: of \: zeroes ( \alpha  \beta ) =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} }  \\  \\  - 2 \times 4 =  \frac{ - 8}{1}  \\  \\  - 8 =  - 8

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\Large{\underline{\underline{\bf{Hence\: Verified\: !}}}}

\Large{\underline{\underline{\bf{Thanks}}}}

Similar questions