Math, asked by gandlojiakhil9, 4 days ago

find the zeroes of the polynomial x square -5x+6 and verify the relationship between the zeros and the coefficients​

Answers

Answered by ImperialGladiator
58

Answer:

Zeros of the polynomial is 3 and 2

Explanation:

Given polynomial,

 \rm \implies \:  {x}^{2}  - 5x + 6

On comparing with the general form of a quadratic equation ax² + bx + c

We get,

  • a = 1
  • b = -5
  • c = 6

By quadratic formula,

 \rm \implies \: x =  \dfrac{ - b \pm \sqrt{ {(b)}^{2}  - 4ac} }{2a}

 \rm \implies \: x =  \dfrac{ -  ( - 5) \pm \sqrt{ {( - 5)}^{2}  - 4(1)(6)} }{2(1)}

 \rm \implies \: x =  \dfrac{ 5 \pm \sqrt{ 25- 24} }{2}

 \rm \implies \: x =  \dfrac{ 5 \pm \sqrt{1} }{2}

 \rm \implies \: x =  \dfrac{ 5 + 1 }{2}  \: and \:  \dfrac{5 - 1}{2}

 \rm \implies \: x =  \dfrac{6}{2}  \: and \:  \dfrac{4}{2}

 \rm \therefore \: x =  3 \: and \:  2

Zeros of the polynomial are 3 and 2

Verification,

 \rm \bullet\: sum \: of \: zeros =  \dfrac{ - b}{a}

 \rm  \implies \: 3  + 2  = \dfrac{ - ( - 5)}{1}

 \rm  \implies \: 5= \dfrac{ 5}{1}

 \rm  \implies \: 5= { 5}

And also,

 \rm \bullet \: product \: of \: zeros =  \dfrac{c}{a}

 \rm \implies \: 3 \ast 2 =  \dfrac{6}{1}

 \rm \implies \: 6 =  6

Hence, verified !!

Answered by ⱮøøɳƇⲅυѕɦεⲅ
38

\huge \blue \diamond \: \huge  \underbrace {\textrm{{{\color{brown}{Given}}}}} \: \blue\diamond

We have given Polynomial

\bf \Large \hookrightarrow \: \:  {x}^{2}  \:  -  \: 5x \:  +  \: 6

_______________________

\huge \blue \diamond \: \huge  \underbrace {\textrm{{{\color{brown}{To  \: Find}}}}} \: \blue\diamond

Zeroes of the polynomial and we have to verify the relationship between the zeros and the coefficients.

_______________________

\huge \blue \diamond \: \huge  \underbrace {\textrm{{{\color{brown}{Solution}}}}} \: \blue\diamond

Now , we using factorisation method to find the Zeros of polynomial - 5x + 6.

\bf \large \rightarrow \: \:  {x}^{2}  \:  -  \: 5x \:  +  \: 6

By Splitting the middle term :

\bf \large \rightarrow \: \:  {x}^{2}  \:  -  \: 5x \:  +  \: 6

\bf \large \rightarrow \: \:   {x}^{2}  \:  -  \: 2x \:  -  \: 3x \:  +  \: 6

\bf \large \rightarrow \: \:  x \: (x - 2) \:  \:  \:  - 3 \: (x - 2)

\bf \large \rightarrow \: \:  ( \: x \:  - \:  3 \: ) \:  \:  \:  \:   \:  \: \: ( \: x \:  - \:  2 \: )

\bf \large \rightarrow \: x \:  -  \: 3 \:  =  \: 0 \:  \:  \:  \: ; \:  \:  \: x \:  -  \: 2 \:  =  \: 0

\bf \large \rightarrow \: \:  x \:  =  \: 3 \:  \:  \:  \:  \:  \: ; \:  \:  \:  \:  \:  \: x \:  =  \: 2

\bf \large \rightarrow \: \:  x \:  =  \: 3 \:  \: and  \: \: 2

Zeros of the polynomial is 3 and 2 .

 \Large\begin{gathered} {\underline{\boxed{ \bf{\red{ \alpha  \:  =  \: 3}}}}}\end{gathered}

\Large\begin{gathered} {\underline{\boxed{ \bf {\red{  \beta   \:  =  \: 2}}}}}\end{gathered}

______________________

Now , comparing x² - 5x + 6 to the general form of a quadratic equation.

 \:

General form of quadratic equation - ax² + bx + c.

Then ,

\bf \large \implies \: \:  a \:  \:  =  \:  \: 1

\bf \large \implies \: \:b \: \:   =  \:  \:  - 5

\bf \large \implies \: \:c \: \:   =  \:  \: 6

_______________________

Now we have to verify the relationship between the zeros and the coefficients.

\Large  \mid   \underline {\rm {{{\color{orange}{First  \:  \: Relation \: ...}}}}} \mid

\bf \large \implies \: \:Sum  \:  \: of \:  \:  Zeros

\bf \Large \: \:(  \: \alpha  \:  +  \:  \beta  \: ) \:  =  \:  \frac{ - b}{a}  \\

\bf \Large \: \:(  \: 3  \:  +  \:  2  \: ) \:  =  \:  \frac{ -  \: ( - 5)}{1}  \\

\bf \Large \: \: \implies \:  \:  \: 5 \:  =  \: 5

{\boxed{ \Large{ \blue{ \bf{ \underline{ LHS = RHS}}}}}}

First Relation is proved.

______________________

\Large  \mid   \underline {\rm {{{\color{orange}{Second  \:  \: Relation\: ...}}}}} \mid

\bf \large \implies \: \:Product \:  \:  of \:  \:  Zeros

\bf \Large \: \: \alpha \:   \beta  \:  =  \:  \frac{c}{a}  \\

\bf \Large \: \:3 \:  \times  \:2 \:  =  \:  \frac{6}{1}  \\

\bf \Large \: \: \implies \:  \:  \: 6 \:  =  \: 6

{\boxed{ \Large{ \blue{ \bf{ \underline{ LHS = RHS}}}}}}

Second Relation is proved.

_______________________

\huge \blue \diamond \: \huge  \underbrace {\textrm{{{\color{brown}{Note}}}}} \: \blue\diamond

You can solve this question by second method ( Quadratic formula ) also with is already answered by @taslimuddinahmed60.

Similar questions