Math, asked by seemasingh987600, 8 months ago

Find the zeroes of the quadratic polynomial 4x^2-6-0x and verify the relationship between the zeroes and the cofficient of the polynomial?​

Answers

Answered by btsarmy189
0

Answer:

The roots are x=\frac{2+\sqrt{10}}{2},\frac{2-\sqrt{10}}{2}x=

2

2+

10

,

2

2−

10

.

Step-by-step explanation:

Given : Quadratic polynomial 4x^2-6-8x4x

2

−6−8x

To find : The zero of the quadratic polynomial and verify the relationship between the zeroes and the coefficients of the polynomial ?

Solution :

Let \alpha,\betaα,β are the roots of the equation.

The polynomial in equation form, 4x^2-8x-6=04x

2

−8x−6=0

2x^2-4x-3=02x

2

−4x−3=0

Here, a=2, b=-4 and c=-3.

Using quadratic formula, x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}x=

2a

−b±

b

2

−4ac

x=\frac{-(-4)\pm\sqrt{(-4)^2-4(2)(-3)}}{2(2)}x=

2(2)

−(−4)±

(−4)

2

−4(2)(−3)

x=\frac{4\pm\sqrt{40}}{4}x=

4

40

x=\frac{4\pm2\sqrt{10}}{4}x=

4

4±2

10

x=\frac{2\pm\sqrt{10}}{2}x=

2

10

The roots are \alpha=\frac{2+\sqrt{10}}{2},\beta=\frac{2-\sqrt{10}}{2}α=

2

2+

10

,β=

2

2−

10

The sum of roots \alpha+\beta=-\frac{b}{a}α+β=−

a

b

\frac{2+\sqrt{10}}{2}+\frac{2-\sqrt{10}}{2}=-\frac{-4}{2}

2

2+

10

+

2

2−

10

=−

2

−4

\frac{2+\sqrt{10}+2-\sqrt{10}}{2}=2

2

2+

10

+2−

10

=2

\frac{4}{2}=2

2

4

=2

2=22=2

Verified.

The product of roots \alpha\beta=\frac{c}{a}αβ=

a

c

(\frac{2+\sqrt{10}}{2})(\frac{2-\sqrt{10}}{2})=\frac{-3}{2}(

2

2+

10

)(

2

2−

10

)=

2

−3

\frac{2^2-\sqrt{10}^2}{4}=-\frac{3}{2

\frac{4-10}{4}=-\frac{3}{2

\frac{-6}{4}=-\frac{3}{2

-\frac{3}{2}=-\frac{3}{2

Verified.

Similar questions