Math, asked by flames1react, 10 months ago

Find the zeroes of the quadratic polynomial 4x2-3x-1 and verify the relationship between the
zeroes and the coefficients

Answers

Answered by Anonymous
64

 \large\bf\underline \orange{Given:-}

  • f(x) = 4x² - 3x -1

 \large\bf\underline \orange{To \: find:-}

  • zeroes of the given polynomial.
  • relationship between the zeroes and coefficients.

 \huge\bf\underline \green{Solution:-}

  • f(x) = 4x² - 3x -1

⠀⠀⠀⠀⠀➝ 4x² - 4x + x -1

⠀⠀⠀⠀⠀➝ 4x(x-1) +1(x-1)

⠀⠀⠀⠀⠀➝ (4x + 1)(x - 1)

⠀⠀⠀⠀⠀➝ x = -1/4 or x = 1

Let α and β are the zeroes of the given polynomial.

Let :-

  • α = -1/4
  • β = 1

  • f(x) = 4x² - 3x -1
  • a = 4
  • b = -3
  • c = -1

Relationship between the zeroes and coefficients:-

Sum of zeroes = - b/a

⠀⠀⠀⠀⠀➝ -1/4 +1 = -(-3)/4

⠀⠀⠀⠀⠀➝ (-1+4)/4 = 3/4

⠀⠀⠀⠀⠀➝ 3/4 = 3/4

Product of zeroes = c/a

⠀⠀⠀⠀⠀➝ -1/4 × 1 = -1/4

⠀⠀⠀⠀⠀➝ -1/4 = -1/4

LHS = RHS

hence relationship is verified

Answered by Anonymous
39

\red{\underline{\underline{Answer:}}}

\sf{Zeroes \ of \ polynomial \ are \ 1 \ and \ \frac{-1}{4}}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{4x^{2}-3x-1}}

\sf\pink{To \ find:}

\sf{Zeroes \ of \ the \ polynomial.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{4x^{2}-3x-1}}

\sf{\implies{4x^{2}-4x+1x-1}}

\sf{\implies{4x(x-1)+1(x-1)}}

\sf{\implies{(x-1)(4x+1)}}

\sf{\implies{x=1 \ or \ \frac{-1}{4}}}

\sf\purple{\tt{\therefore{Zeroes \ of \ polynomial \ are \ 1 \ and \ \frac{-1}{4}}}}

__________________________________

__________________________________

\sf\blue{\underline{\underline{Verification:}}}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{4x^{2}-3x-1}}

\sf{Here, \ a=4, \ b=-3 \ and \ c=-1}

\sf{\implies{Zeroes \ are \ 1 \ and \ \frac{-1}{4}}}

\sf{Let \ \alpha \ be \ 1 \ and \ \beta \ be \ \frac{-1}{4}}

________________________________

\sf{\alpha+\beta=1+(\frac{-1}{4})}

\sf{\therefore{\alpha+\beta=\frac{4-1}{4}}}

\sf{\therefore{\alpha+\beta=\frac{3}{4}...(1)}}

\sf{\frac{-b}{a}=\frac{-(-3)}{4}}

\sf{\therefore{\frac{-b}{a}=\frac{3}{4}...(2)}}

\sf{...from \ (1) \ and \ (2)}

\sf{Sum \ of \ zeroes=\frac{-b}{a}}

________________________________

\sf{\alpha\beta=1\times\frac{-1}{4}}

\sf{\therefore{\alpha\beta=\frac{-1}{4}...(3)}}

\sf{\frac{c}{a}=\frac{-1}{4}...(4)}

\sf{...from \ (3) \ and \ (4)}

\sf{Product \ of \ zeroes=\frac{c}{a}}

\sf{Hence, \ verified.}

Similar questions