Math, asked by unnikrishnans1969, 8 months ago

Find the zeroes of the quadratic polynomial 6x^2+x-5

Answers

Answered by TrickYwriTer
20

Step-by-step explanation:

Given -

  • p(x) = 6x² + x - 5

To Find -

  • Zeroes of the polynomial

Now,

→ 6x² + x - 5

By middle term splitt :-

→ 6x² + 6x - 5x - 5

→ 6x(x + 1) - 5(x + 1)

→ (6x - 5)(x + 1)

Zeroes are -

→ 6x - 5 = 0 and x + 1 = 0

→ x = 5/6 and x = -1

Verification :-

As we know that :-

  • α + β = -b/a

→ -1 + 5/6 = -(1)/6

→ -6 + 5/6 = -1/6

→ -1/6 = -1/6

LHS = RHS

And

  • αβ = c/a

→ -1 × 5/6 = -5/6

→ -5/6 = -5/6

LHS = RHS

Hence,

Verified...

Answered by SarcasticL0ve
7

\star \; {\underline{\underline{\rm{\red{Given:}}}}}

  • p(x) = 6x² + x - 5

\star \; {\underline{\underline{\rm{\red{To\;Find:}}}}}

  • Zeroes of the quadratic polynomial.

\star \; {\underline{\underline{\rm{\red{Solution:}}}}}

: \implies 6x² + x - 5

\small{\underline{\underline{\sf{\dag \; Splitting\;middle\;term:}}}}

: \implies 6x² + 6x - 5x - 5

: \implies 6x(x + 1) -5(x + 1)

: \implies (6x - 5)(x + 1)

\small{\underline{\underline{\sf{\dag \; Therefore\;zeroes\;are:}}}}

: \leadsto (6x - 5) = 0

: \leadsto \sf{x = \dfrac{5}{6}}

: \leadsto (x + 1) = 0

: \leadsto x = -1

\rule{200}{2}

{\underline{\underline{\sf{\purple{\dag \; Verification:}}}}}

We know that, if  \alpha and  \beta are zeroes of polynomial then:

\small \; \; \; \; {\underline{\underline{\sf{\blue{\dag \; Sum\;of\;zeroes:}}}}}

 \; \; \; \star \; \sf{ \alpha + \beta = \dfrac{-b}{a}}

: \implies \sf{ -1 + \dfrac{5}{6} = \dfrac{-1}{6}}

: \implies \sf{ \dfrac{-6 + 5}{6} = \dfrac{-1}{6}}

: \implies \sf{ \dfrac{-1}{6} = \dfrac{-1}{6}}

: \implies \sf{LHS = RHS}

\small \; \; \; \; {\underline{\underline{\sf{\blue{\dag \;Product\;of\;zeroes:}}}}}

 \; \; \; \star \; \sf{ \alpha \beta = \dfrac{c}{a}}

: \implies \sf{ -1 \times \dfrac{5}{6} = \dfrac{-5}{6}}

: \implies \sf{ \dfrac{-5}{6} = \dfrac{-5}{6}}

: \implies \sf{LHS = RHS}

{\underline{\underline{\sf{\purple{\dag \; Hence\; Verified!}}}}}

\rule{200}{2}

Similar questions