Math, asked by piyush8770420710, 10 months ago

Find the zeroes of the quadratic polynomial 6x2

-5x-14 and verify both relations.​

Answers

Answered by BrainlyQueen01
19

Answer:

2 and - 7/6

Step-by-step explanation:

Given polynomial :

  • 6x² - 5x - 14

We can find the zeroes of the quadratic polynomial by splitting the middle term. To split the middle term, we need two numbers whose sum is (-5) and product is (14 * 6 = 84).

Such two numbers can be (-12) and (7).

Here we go,

\sf \longrightarrow 6x^2 - 5x - 14 = 0 \\\\\longrightarrow \sf 6x^2 -12x + 7x - 14=p \\\\\longrightarrow \sf 6x(x-2)+7(x-2)=0\\\\\longrightarrow \sf (x-2)(6x +7) = 0\\\\\longrightarrow \sf x = 2 \: or \: x = \frac{-7}{6}

Therefore, the zeroes of the quadratic polynomial is 2 and -7/6.

_______________________

Verification :

We know that,

Sum of zeroes = \sf \dfrac{-(coefficient \: of \: x)}{coefficient \: of \: x^2}

\sf \longrightarrow 2 + \frac{-7}{6} = \frac{-(-5)}{6} \\\\\longrightarrow \sf \frac{12-7}{6}=\frac{5}{6}\\\\\longrightarrow \sf \frac{5}{6}=\frac{5}{6} \: \: \: \: \: \: \bold{[\therefore \: LHS = RHS]}

Product of zeroes = \sf \dfrac{Constant \: term}{coefficient \: of \: x^2}

\longrightarrow \sf 2 \times (\frac{-7}{6}) = \frac{-14}{6}\\\\\longrightarrow \sf \frac{-14}{6}= \frac{-14}{6}\: \: \: \: \: \: \bold{[\therefore \: LHS = RHS]}

Hence, it is verified.

Answered by sanchitachauhan241
24

{\sf{\underline{\underline{\pink{Solution:-}}}}}

{ \ 2 \ and \ -} \frac{7}{6}

\sf\pink{Step-by-step \  explanation:}

\sf\red{Given \  polynomial :}

  • \sf\green{6x² - 5x - 14}

ᴡᴇ ᴄᴀɴ ꜰɪɴᴅ ᴛʜᴇ ᴢᴇʀᴏᴇꜱ ᴏꜰ ᴛʜᴇ Qᴜᴀᴅʀᴀᴛɪᴄ ᴘᴏʟʏɴᴏᴍɪᴀʟ ʙʏ ꜱᴘʟɪᴛᴛɪɴɢ ᴛʜᴇ ᴍɪᴅᴅʟᴇ ᴛᴇʀᴍ. ᴛᴏ ꜱᴘʟɪᴛ ᴛʜᴇ ᴍɪᴅᴅʟᴇ ᴛᴇʀᴍ, ᴡᴇ ɴᴇᴇᴅ ᴛᴡᴏ ɴᴜᴍʙᴇʀꜱ ᴡʜᴏꜱᴇ ꜱᴜᴍ ɪꜱ (-5) ᴀɴᴅ ᴘʀᴏᴅᴜᴄᴛ ɪꜱ (14 × 6 = 84).

ꜱᴜᴄʜ ᴛᴡᴏ ɴᴜᴍʙᴇʀꜱ ᴄᴀɴ ʙᴇ (-12) ᴀɴᴅ (7).

\sf\orange{Here \ we \  go,}

\begin{gathered}\sf \longrightarrow 6x^2 - 5x - 14 = 0 \\\\\longrightarrow \sf 6x^2 -12x + 7x - 14=p \\\\\longrightarrow \sf 6x(x-2)+7(x-2)=0\\\\\longrightarrow \sf (x-2)(6x +7) = 0\\\\\longrightarrow \sf x = 2 \: or \: x = \frac{-7}{6}\end{gathered}

ᴛʜᴇʀᴇꜰᴏʀᴇ, ᴛʜᴇ ᴢᴇʀᴏᴇꜱ ᴏꜰ ᴛʜᴇ Qᴜᴀᴅʀᴀᴛɪᴄ ᴘᴏʟʏɴᴏᴍɪᴀʟ ɪꜱ 2 ᴀɴᴅ -7/6.

_______________________

\sf÷purple{Verification :}

\sf\blue{We \  know \  that,}

Sum \  of \  zeroes = \sf \dfrac{-(coefficient \: of \: x)}{coefficient \: of \: x^2}

\begin{gathered}\sf \longrightarrow 2 + \frac{-7}{6} = \frac{-(-5)}{6} \\\\\longrightarrow \sf \frac{12-7}{6}=\frac{5}{6}\\\\\longrightarrow \sf \frac{5}{6}=\frac{5}{6} \: \: \: \: \: \: \bold{[\therefore \: LHS = RHS]}\end{gathered}

Product \  of \  zeroes = \sf \dfrac{Constant \: term}{coefficient \: of \: x^2}

\begin{gathered}\longrightarrow \sf 2 \times (\frac{-7}{6}) = \frac{-14}{6}\\\\\longrightarrow \sf \frac{-14}{6}= \frac{-14}{6}\: \: \: \: \: \: \bold{[\therefore \: LHS = RHS]}\end{gathered}

\sf\red{Hence \ , it \  is \  verified.}

Similar questions