Math, asked by vijay99233, 1 month ago

Find the zeroes of the quadratic polynomial p(x) = ax²-(a²+ 1)x+a and verify relationship between the zeroes and the coefficients.​

Answers

Answered by Itzpureindian
4

Step-by-step explanation:

Factorization: A(X2 ...

We have been given. a(x2 + 1) - x(a2 + 1) = 0. ax2 - (a2 + 1)x + a = 0. ax2 - a2x - x + a = 0. ax( x - a) - 1(x - a) = 0. (ax - 1)(x - a) = 0. Therefore

Answered by 12thpáìn
6

Quadratic Polynomial p(x)=ax²-(a²+1)x+a

{\mapsto\sf    a {x}^{2} -( {a}^{2} +1)x+a=0}

{\mapsto\sf    a {x}^{2} -{a}^{2}x -x+a=0}

{\mapsto\sf   ax(  x -a )-1(x-a)=0}

{\mapsto\sf   (  x -a )(ax + 1)=0}

{\mapsto\sf   (  x -a ) = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (ax - 1)=0}

{\mapsto\sf   x = a \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ax = 1}

{\mapsto\sf   x = a \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x = \dfrac{ 1}{a} } \\  \\

Let alpha be (a) and beta be (1/a).

In Quadratic Equation ax²-(a²+1)x+a =0

On comparing with ax²+bx+c=0

\sf{Sum  \:  \: of \:  \:  zeres (Alpha+beta) = \dfrac{-b}{a}  = \dfrac{-Coefficient  \: of \:  x}{-Coefficient \:  of \:   {x}^{2} }  }

\sf{a +  \dfrac{  1}{a}  =   \dfrac{ - \{ -  ( {a}^{2} + 1) \} }{a}  }

\sf{ \dfrac{ {a}^{2}   +  1}{a}  =   \dfrac{   {a}^{2} +  {1}}{a}  }

\sf{Product \:  of \:  zeros \:  (Alpha×Beta)=\dfrac{c}{a}=\dfrac{ Constant \:  term}{Coefficient \:  of \:  {x}^{2} }}

\sf{a \times  \dfrac{  1}{a}  =  \dfrac{a}{a} }

\sf{a = a }

Verified

Similar questions