Math, asked by amittyagi5262, 10 months ago

Find the zeroes of the quadratic polynomial x2-3x-4 and the verify therelationship between the zeroes and the coefficient of the polynomial​

Answers

Answered by Rohit18Bhadauria
15

Given:

A quadratic polynomial x²-3x-4

To Find:

  • Zeroes of polynomial x²-3x-4

Solution:

Let the given polynomial be

p(x)= x²-3x-4

And x be the zero of the given polynomial, then it will satisfy the polynomial or when we put x in given polynomial then p(x) becomes 0.

i.e. p(x)= x²-3x-4= 0

⇒ x²-3x-4= 0

On splitting the middle terms, we get

⇒ x²-4x+x-4= 0

⇒ x(x-4)+1(x-4)= 0

⇒ (x+1)(x-4)= 0

⇒ x= -1, 4

So, -1 and 4 are the zeroes of the given polynomial.

Verification:

We know that,

For a quadratic polynomial,

\sf\pink{(A)Sum\:of\:Zeroes=-\dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^{2}}}

\sf\purple{(B)Product\:of\:Zeroes=\dfrac{Constant\:Term}{Coefficient\:of\:x^{2}}}

Therefore,

\bf\green{\underline{\underline{Verification\:of\:A}}}

\sf\pink{4-1=-\dfrac{(-3)}{1}}

\sf\pink{3=3}

Since, L.H.S= R.H.S.

A is verified

\bf\green{\underline{\underline{Verification\:of\:B}}}

\sf\purple{4(-1)=\dfrac{(-4)}{1}}

\sf\purple{-4=-4}

Since, L.H.S= R.H.S.

B is verified

Hence, Zeroes of given polynomial are -1 and 4.

Answered by HuMinha
8

\Huge\fbox{\color{red}{Hello:-}}

\huge\mathfrak\red{Question}

Find the zeroes of x^2+3x-4

\color{Green}{\large\underline{\underline\mathtt{Answer:-}}}

The graph of p(x) is given above.

Clearly, from the graph x=−4,1 are zeros of p(x).

Verification:-

p(−4)=(−4)2+3×−4−4=16−12−4=0

p(1)=(1)2+3×1−4=1+3−4=0

Attachments:
Similar questions
Math, 5 months ago