Math, asked by gandlaumapower2383, 11 months ago

Find the zeroes of the quadratic polynomial x2 — 6x + 8.

Answers

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:x=2\:and\:4}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies  {x}^{2}  -6x + 8= 0 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Value \: of \: x = ?

• According to given question :

 \bold{As \: we \: know \: that} \\\tt:  \implies {x}^{2}  - 6x + 8 = 0 \\  \\ \tt:  \implies {x}^{2} - 4x - 2x + 8= 0 \\  \\ \tt:  \implies x(x -4) - 2(x -4) = 0 \\  \\ \tt:  \implies(x - 2)(x -4)  = 0\\  \\  \green{\tt:  \implies x =  2 \: and \:  4} \\  \\  \bold{Alernate \: method} \\  \tt:  \implies  x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\ \tt:  \implies  x =  \frac{ -(- 6) \pm \sqrt{ {(-6)}^{2} - 4 \times 1 \times 8 } }{2 \times 1}  \\  \\ \tt:  \implies  x =  \frac{ 6 \pm \sqrt{4} }{6}  \\  \\ \tt:  \implies  x =  \frac{ 6 \pm2}{2}  \\  \\  \green{\tt:  \implies  x =  2 \: and \:  4 }

Answered by MarshmellowGirl
17

 \large \underline{ \blue{ \boxed{ \bf \green{Required \: Answer}}}}

Attachments:
Similar questions