Math, asked by Abidkatalur3271, 10 months ago

Find the zeroes of the quadratic polynomial x2 + 9x + 18, and verify the relationship between the zeroes and the coefficients.

Answers

Answered by decentdileep
10

x^2+9x+18

By factorization

x^2+3x+6x+18

x(x+3)+6(x+3)

x+6=0. x+3=0

x=-6. x=-3

alpha=-6. Beta=-3

Relationship between zeroes and coefficients

Sum of zeroes(alpha+beta)=-6+(-3)=-6-3=-9

Product of zeroes(alpha×beta)=18×1=18

I hope it's help you

Plz mark my answer as a brainliest answer

Answered by silentlover45
22

\underline\mathfrak{Given:-}

  • P (x) => x² + 9x + 18

\underline\mathfrak{To \: \: Find:-}

  • Find the zeroes are coefficients ......?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: P \: {(x)} \: \: = \: \: {x}^{2} \: + \: {9x} \: + \: {18}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: + \: {9x} \: + \: {18}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: + \: {6x} \: + \: {3x} \: + \: {18}

\: \: \: \: \: \leadsto \: \: {x} \: {({x} \: + \: {6})} \: + \: {3} \: {({x} \: + \: {6})}

\: \: \: \: \: \leadsto \: \: {({x} \: + \: {3})} \: \: \: {({x} \: + \: {6})}

\: \: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: {-3} \: \: \: and \: \: \: {x} \: \: = \: \: {-6}

\: \: \: \: \: \: \: \: \: {\alpha} \: \: = \: \: {-3} \: \: \: and \: \: \: {\beta} \: \: = \: \: {-6}

\underline\mathfrak{Verification:-}

  • x² + 9x + 18
  • a = 1
  • b = 9
  • c = 18

\: \: \: \: \: \therefore {Sum \: \: of \: \: zeroes} \: \: = \: \: \frac{ \: - \: coefficient \: \: of \: \: x}{coefficient \: \: of \: \: {x}^{2}}

\: \: \: \: \: \leadsto \: \: {\alpha} \: + \: {\beta}  \: \: = \: \: \frac{-b}{a}

\: \: \: \: \: \leadsto \: \: {-3} \: + \: {(-6)}  \: \: = \: \: {-9}

\: \: \: \: \: \leadsto \: \: {-3} \: - \: {6} \: \: = \: \: {-9}

\: \: \: \: \: \leadsto \: \: {-9}  \: \: = \: \: {-9}

\: \: \: \: \: \therefore {Product \: \: of \: \: zeroes} \: \: = \: \: \frac{constant \: \: term}{coefficient \: \: of \: \: {x}^{2}}

\: \: \: \: \: \leadsto \: \: {\alpha} \: {\beta}  \: \: = \: \: \frac{c}{a}

\: \: \: \: \: \leadsto \: \: {-3} \: \times \: {(-6)}  \: \: = \: \: {18}

\: \: \: \: \: \leadsto \: \: {18} \: \: = \: \: {18}

Verified.

Similar questions