Math, asked by richwitch769, 10 months ago

Find the zeros and verify the relationship between the zeros and their cofficient under root 3xsquare plus 10xsquareplus7under root 3

Answers

Answered by irshadsyed281
20

\bold{\blue{\underline{\red{G}\pink{iv}\green{en}\purple{:-}}}}

  • P(x) = √3x² + 10x + 7√3

\bold{\blue{\underline{\red{Zeros}\pink{\:of}\green{\:the\:polynomials}\purple{:-}}}}

  • Zeros of the polynomial is the value of the variable for which when replaced in the polynomial the value for the polynomial changes to zero.

\bold{\blue{\underline{\red{General}\pink{\:form \:of }\green{\:polynomial}\purple{:-}}}}

  • \bold{a_{n}x^n + a_{n-1}x^{n-1} +...... + a_{2}x^2 + a_{1}x + a_{0}} Where ' \bold{a_{n}  , a_{n-1} ...... a_{1} , a_{0}} ' are Real numbers and 'n' is an integer

.\bold{\blue{\underline{\red{Q}\pink{uest}\green{ion}\purple{:-}}}}

  • Find the zeros and verify the relationship between the zeros and their coefficient 'P(x) = √3x² + 10x + 7√3' ?

\bold{\blue{\underline{\red{S}\pink{olut}\green{ion}\purple{:-}}}}  

   \bold{\blue{\underline{\red{To}\pink{\:find}\green{\:the\:zeros}\purple{:-}}}}

  • P(x) = √3x² + 10x + 7√3
  • P(x) = √3x² + 7x + 3x + 7√3      

    ∵ √3 × 7√3 = 21m + n = 10x & m × n = 21

  • P(x) = x(√3x + 7 ) + √3²x + 7
  • P(x) = x(√3x + 7 ) + √3(√3x + 7)
  • P(x) = (x + √3)(√3 + 7)
  • x + √3 = 0
  • x = -√3

    \\\boxed{\bold{\alpha = -\sqrt{3}}}

  • √3x + 7 = 0
  • x = \bold{\frac{-7}{\sqrt{3} } }

    \boxed{\bold{\beta\:=\:{\bold{\frac{-7}{\sqrt{3} }}}}}

    \bold{\blue{\underline{\red{V}\pink{eri}\green{fication}\purple{:-}}}}

  • α + β = \bold{\frac{-b}{a} }  
  • -√3 + \bold{\frac{-7}{\sqrt{3} } }  = \bold{\frac{-10}{\sqrt{3} } }
  • \bold{\frac{-7-3}{\sqrt{3} } }  = \bold{\frac{-10}{\sqrt{3} } }

    \boxed{\bold{\frac{-10}{\sqrt{3} } } =  \bold{\frac{-10}{\sqrt{3} } } }

  • αβ = \bold{\frac{c}{a} }
  • -√3 × \bold{\frac{-7}{\sqrt{3} } }  = \bold{\frac{7\sqrt{3} }{\sqrt{3} } }

    \boxed{\bold{7\:=\:7}}  


Anonymous: Perfect!
Similar questions