Math, asked by eihitbanerjee, 9 months ago

find the zeros of 2root 3x^2 - 5x + root3​

Answers

Answered by sumansharma9402
1

Answer:

Answer:

\text{The roots are }\frac{3}{2\sqrt3}, \frac{1}{\sqrt3}The roots are

2

3

3

,

3

1

Step-by-step explanation:

Given the equation

2\sqrt3 x^2-5x+\sqrt3=02

3

x

2

−5x+

3

=0

we have to find the roots of above equation using quadratic formula.

2\sqrt3 x^2-5x+\sqrt3=02

3

x

2

−5x+

3

=0

\text{Comparing above equation with }ax^2+bx+c=0\text{ , we get}Comparing above equation with ax

2

+bx+c=0 , we get

a=2\sqrt3, b=-5, c=\sqrt3a=2

3

,b=−5,c=

3

By quadratic formula

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}x=

2a

−b±

b

2

−4ac

x=\frac{-(-5)\pm \sqrt{(-5)^2-4(2\sqrt3)(\sqrt3)}}{2(2\sqrt3)}x=

2(2

3

)

−(−5)±

(−5)

2

−4(2

3

)(

3

)

x=\frac{5\pm\sqrt{25-24}}{4\sqrt3}x=

4

3

25−24

x=\frac{5\pm 1}{4\sqrt3}x=

4

3

5±1

x=\frac{6}{4\sqrt3}, \frac{4}{4\sqrt3}x=

4

3

6

,

4

3

4

\text{Hence, the roots are }\frac{3}{2\sqrt3}, \frac{1}{\sqrt3}Hence, the roots are

2

3

3

,

3

1

Similar questions