Math, asked by 9440160554v, 9 months ago

Find the zeros of √5x2+9x+4√5

Answers

Answered by Mihir1001
33
We have,

 \quad  \sqrt{5}  {x}^{2}  + 9x + 4 \sqrt{5}  \\  \\  =  \sqrt{5}  {x}^{2}  + (5 + 4)x + 4 \sqrt{5}  \\  \\  =  \sqrt{5}  {x}^{2}  + 5x + 4x + 4 \sqrt{5}  \\  \\  =  \sqrt{5} x(x) +  \sqrt{5} x( \sqrt{5} ) + 4(x) + 4( \sqrt{5} ) \\  \\  =  \sqrt{5} x(x +  \sqrt{5} ) + 4(x +  \sqrt{5} ) \\  \\  = (x +  \sqrt{5} )( \sqrt{5} x + 4)

For finding the zeroes of the polynomial,

 \texttt{let}  \quad \sqrt{5}  {x}^{2}  + 9x + 4 \sqrt{5}  = 0 \\  \\  \implies (x +  \sqrt{5} )( \sqrt{5} x + 4) = 0 \\  \\  \implies x +  \sqrt{5}  = 0 \:  \boxed{or} \:  \sqrt{5} x + 4 = 0 \\  \\  \implies x =  -  \sqrt{5}  \quad  \:  \boxed{or}  \quad x =  -  \frac{4}{ \sqrt{5} }
Similar questions