Physics, asked by sanju2005swathi, 10 months ago

Find the zeros of f(x) =x^2/a+b/ac*x/b-1/c​

Answers

Answered by netta00
0

Zeros of the equation are

x_2=\dfrac{-b-\sqrt{b^2+2ac}}{2c} \\x_1=\dfrac{-b+\sqrt{b^2+2ac}}{2c}

Explanation:

Learn more :https://brainly.in/question/9051707

Given that

f(x)=\dfrac{x^2}{a}+\dfrac{b}{ac}x-\dfrac{1}c}

f(x)=0 ,to find zeros

The above equation is a quadratic equation

we know that the general equation of quadratic

Ax^2+Bx+C=0

The zeros of the equation given as follows

x_1=\dfrac{-B+\sqrt{B^2-2AC}}{2A}\\x_2=\dfrac{-B-\sqrt{B^2-2AC}}{2A}

Now by putting the values in the above equation

x_1=\dfrac{-\dfrac{b}{ac}+\sqrt{\dfrac{b^2}{a^2c^2}+2\times \dfrac{1}{a}\times \dfrac{1}{c}}}{2\times \dfrac{1}{a}}\\x_1=\dfrac{-b+\sqrt{b^2+2ac}}{2c}

x_2=\dfrac{-\dfrac{b}{ac}-\sqrt{\dfrac{b^2}{a^2c^2}+2\times \dfrac{1}{a}\times \dfrac{1}{c}}}{2\times \dfrac{1}{a}}\\x_2=\dfrac{-b-\sqrt{b^2+2ac}}{2c}

Therefore the zeros of the equation will be

x_2=\dfrac{-b-\sqrt{b^2+2ac}}{2c} \\x_1=\dfrac{-b+\sqrt{b^2+2ac}}{2c}

Similar questions