Math, asked by ranjanmah8804, 2 months ago

Find the zeros of following quadratic polynomial and verify the relationship between the zeros and co-efficient of X^-5X+6

Answers

Answered by Anonymous
5

Given Polynomial : x² - 5x + 6

We've to find relationship b/w zeroes and Coefficient of given quadratic Polynomial.

⠀⠀⠀⠀

☆ Let's find out zeroes of Given Polynomial :

⠀⠀⠀⠀

\begin{gathered}\qquad:\implies\sf x^2   - 5x + 6= 0\\\\\\ \qquad:\implies\sf x^2  - 2x  - 3x+6 = 0\\\\\\ \qquad:\implies\sf x(x  -  2)  - 3(x  - 2)= 0\\\\\\ \qquad:\implies\sf (x  -  2)(x  - 3) = 0\\\\\\ \qquad:\implies{\underline{\boxed{\pmb{\frak{\red{x = 2\:\:or\:\:x = 3}}}}}}\:\bigstar\\\\\\\end{gathered}

\therefore\:{\underline{\sf{Hence,\:The\:zeroes\:of\:Polynomial\:are\:{\pmb{ \sf{ 2}}}\:{\sf{\&}}\:{\bf{3}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

✇ Let's consider α and β be zeroes of Polynomial.

Here, In the given Polynomial x² - 5x + 6, {a = 1 , b = 5 & c = 6}.

⠀⠀⠀⠀

☆ Now, Let's verify the relationship between zeroes and Coefficient :

⠀⠀⠀

\begin{gathered}\begin{gathered}\bf{\dag}\:{\underline{\boxed{\pmb{\sf{Sum\:of\:zeroes\:\purple{(\alpha + \beta)}\::}}}}}\\\\\\\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\qquad\quad\dashrightarrow\sf \alpha + \beta = \dfrac{-b}{a}\\\\\\ \qquad\quad\dashrightarrow\sf \bigg(  + 2\bigg) + \bigg(  + 3\bigg) = \dfrac{5}{1}\\\\\\ \qquad\quad\dashrightarrow\sf  +  2  + 3= 5\\\\\\ \qquad\quad\dashrightarrow{\boxed{\boxed{\frak{\pink{ 5 = 5}}}}}\\\\\\\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\bf{\dag}\:{\underline{\boxed{\pmb{\sf{Product\:of\:zeroes\:\purple{(\alpha \beta)}\::}}}}}\\\\\\\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\qquad\quad\dashrightarrow\sf \alpha \beta = \dfrac{c}{a}\\\\\\ \qquad\quad\dashrightarrow\sf \bigg(  + 2\bigg) \bigg(  + 3\bigg) = \dfrac{6}{1}\\\\\\ \qquad\quad\dashrightarrow\sf 3 \times 2 = 6\\\\\\ \qquad\quad\dashrightarrow{\boxed{\boxed{\frak{\pink{6= 6}}}}}\\\\\\\end{gathered} \end{gathered}

Hence Verified !

Similar questions