Math, asked by tipusultan12342020, 8 months ago

find the zeros of polynomial x^2-3x-m(m+3)



Answers

Answered by sarikapinkyyadav
0

Answer:

Step-by-step explanation:

f(x) = x2 – 3x – m (m + 3)  By adding and subtracting mx, we get  f(x) = x2 – mx – 3x + mx – m (m + 3)  = x[x – (m + 3)] + m[x – (m + 3)]  = [x – (m + 3)] (x + m)  f(x) = 0 ⇒ [x – (m + 3)] (x + m) = 0  ⇒ [x – (m + 3)] = 0 or (x + m) = 0  ⇒ x = m + 3 or x = –m  So, the zeroes of f(x) are –m and +3.

Answered by brokendreams
0

Step-by-step explanation:

Given : A polynomial x^{2} -3x-m(m+3)

To find : the zeroes of given polynomial.

Formula used :  If we have quadratic equation as,

ax^{2} +bx+c=0

Then

Discriminant of equation (D) is,

D=b^{2} -4ac

and zeroes are, x1,x2=\frac{-b\pm\sqrt{D} }{2a}

x1=\frac{-b+\sqrt{D} }{2*a}    and  x2=\frac{-b-\sqrt{D} }{2*a}.

a is the coefficient of x^{2} , b is the coefficient of x and c is for constant.

We know, to find the zeroes of the expression, we equate the expression with 0.

x^{2} -3x-m(m+3)=0

We can't use splitting method to split middle term because we have another equation as constant.

So we use discriminant formula for finding roots of equation.

Here in given equation we have,

a=1  ,  b=-3  and  c=-m(m+3).

So D=b^{2} -4ac is,

D=(-3)^{2} -4*(1)*[-m(m+3)]

   =9+4(m)(m+3)\\

   =9+4m^{2} +12m  

we get D=4m^{2} +12m+9 , a quadratic equation.

we can solve this equation by splitting middle term (finding factors of(9*4=36) such that they add up to 12)

4m^{2} +6m+6m+9=0

2m(2m+3)+3(2m+3)=0

(2m+3)^{2}

we get discriminant (D) is (2m+3)^{2}.

now the zeroes are,

x1,x2=\frac{-b\pm\sqrt{D} }{2a}

           =\frac{-(-3)\pm\sqrt{(2m+3)^{2} } }{2*1}

          =\frac{3\pm(2m+3)}{2}

the x1 and x2 are,

x1=\frac{-b+\sqrt{D} }{2*a}                                                      x2=\frac{-b-\sqrt{D} }{2*a}

x1=\frac{3+(2m+3)}{2}                                                    x2=\frac{3-(2m+3)}{2}

    =\frac{3+2m+3}{2}                                                           =\frac{3-2m-3}{2}

    =\frac{2m+6}{2}                                                               =\frac{-2m}{2}

    =\frac{2(m+3)}{2}                                                            =-m  

     =m+3

The zeroes of given polynomial are (m+3) and -m .

Similar questions