Math, asked by AashiShk5316, 9 months ago

Find the zeros of quadratic polynomial X ^ 2 - 5x +6 between the zeros and the coefficients

Answers

Answered by sethrollins13
26

Given :

  • Quadratic Polynomial x²-5x+6.

To Find :

  • Zeroes of the polynomial.

Solution :

\longmapsto\tt\bold{{x}^{2}-5x+6}

By Splitting Middle Term :-

\longmapsto\tt{{x}^{2}-(3x+2x)+6}

\longmapsto\tt{{x}^{2}-3x-2x+6}

\longmapsto\tt{x(x-3)-2(x-3)}

\longmapsto\tt{(x-2)(x-3)}

  • x = 2
  • x = 3

So , 2 and 3 are the zeroes of polynomial x²-5x+6..

_______________________

Here :

  • a = 1
  • b = -5
  • c = 6

Sum of Zeroes :

\longmapsto\tt{\alpha+\beta=\dfrac{-b}{a}}

\longmapsto\tt{2+3=\dfrac{-(-5)}{1}}

\longmapsto\tt\bold{5=5}

Product of Zeroes :

\longmapsto\tt{\alpha\beta=\dfrac{c}{a}}

\longmapsto\tt{2\times{3}=\dfrac{6}{1}}

\longmapsto\tt\bold{6=6}

HENCE VERIFIED

Answered by Anonymous
9

─────────────────────

\huge{\mathcal{\underline{\red{SolutioN}}}}

\longmapsto\tt\bold{{x}^{2}-5x+6}</p><p> \:

\tt \: By \: spilting \: the \: middle \: term

\longmapsto\tt{{x}^{2}-(3x+2x)+6} \\ </p><p>\longmapsto\tt{{x}^{2}-3x-2x+6} \\ </p><p>\longmapsto\tt{x(x-3)-2(x-3)} \\ </p><p>\longmapsto\tt{(x-2)(x-3)}

  • x = 2
  • x = 3

\tt  so .. \\ \tt 2 \: and \: 3 \: are \: the  \tt \: zeros \: of \: the \: polynomial \: \\ \tt{x}^{2}  - 5x + 6 \:

─────────────────────

\tt{Here}

  • a = 1
  • b = -5
  • c = 6

 \tt Sum \: of \: Zeros \:

\longmapsto\tt{\alpha+\beta=\dfrac{-b}{a}} \\ </p><p>\longmapsto\tt{2+3=\dfrac{-(-5)}{1}} \\ </p><p>\longmapsto\tt\bold{5=5}

 \tt \: Product \: of \: Zeros \:

\longmapsto\tt{\alpha\beta=\dfrac{c}{a}} \\ </p><p>\longmapsto\tt{2\times{3}=\dfrac{6}{1}} \\ </p><p>\longmapsto\tt\bold{6=6} \\

 \tt\red \: Hence \: Proofed

─────────────────────

Similar questions