Math, asked by mehultiwari567, 1 year ago

Find the zeros of the polynomial 4 x square - 3 x minus 1 by factorization method and verify the relationship between the zeros of the coefficients of the polynomials.

Answers

Answered by BrainlyConqueror0901
37

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore x=1\:and\:\frac{-1}{4}}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies  x \in({4x}^{2}  - 3x - 1 = 0) \\  \\  \underline \bold{To \: Find : } \\  \implies x = ?

• According to given question :

 \bold{Middle \: term \: spliting : } \\ \implies  {4x}^{2}  - 3x - 1 = 0 \\  \\  \implies  {4x}^{2}  - 4x  + x - 1 = 0 \\  \\  \implies 4x(x - 1) + 1(x - 1) =  0 \\  \\  \implies (x - 1)(4x  +  1) = 0 \\  \\  \bold{ \implies x = 1 \: and \:  \frac{ - 1}{4} } \\  \\   \bold{Relationship : } \\    \implies Sum \: of \: zeroes =  \frac{ - b}{a}  \\  \\  \implies  \frac{4 -1}{4}  =  \frac{ - ( - 3)}{4} \\  \\  \implies  \frac{3}{4}   =  \frac{3}{4}  \\\:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{Verified }\\   \\  \implies Product \: of \: zeroes=  \frac{c}{a}  \\  \\  \implies 1 \times  \frac{ - 1}{4}  =  \frac{ - 1}{4}  \\  \\  \implies  \frac{ - 1}{4}  =  \frac{ - 1}{4}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{Verified }

Answered by Anonymous
8

\huge{\mathfrak{\red{\underline{Answer :-}}}}

Given :-

Polynomial: 4x² - 3x - 1

By splitting the middle term

4x² - 4x + x - 1

4x(x - 1) + 1(x - 1)

x - 1 = 0 ; 4x + 1 = 0

x = 1 and x = -1/4

Hence,

Zeroes are 1 and -1/4

\rule{200}{2}

Verification :-

a = 4

b = -3

c = -1

We know that,

Sum of zeroes = -b/a = -(-3/4) = 3/4

Product of zeroes = c/a = -1/4

Verified

\rule{200}{2}

Similar questions