Math, asked by Shanaya1000, 1 year ago

find the zeros of the polynomial F(x)=4√3x^2+5x-2√3, and verify the relationship between the zeros and its coefficients ..

Answers

Answered by Bianchi
7

f(x) = 4\sqrt{3} { x}^{2}  + 5 x  - 2 \sqrt{3}
 = 4x( \sqrt{3}x  + 2) -  \sqrt{3} ( \sqrt{3} x + 2)
 = 4 \sqrt{3}  {x}^{2}  + (8 - 3) x   - 2 \sqrt{3}
 = 4 \sqrt{3}  {x}^{2}  + 8x - 3x - 2 \sqrt{3}
 =4x( \sqrt{3}  + 2) -  \sqrt{3}( \sqrt{3}  x + 2)
 = (4x -  \sqrt{3} )( \sqrt{3} x + 2)

For zeros,

4x  -  \sqrt{3}  = 0 \\  =  >  \: 4x =  \sqrt{3}  \\  \: x =  \frac{ \sqrt{3} }{4}
And
 \sqrt{3}x  + 2 = 0 \\  =  >  \sqrt{3} x =  - 2 \\  =  > x =  \frac{2}{ \sqrt{3} }
Now,
4 \sqrt{3}  {x}^{2}  + 5 {x}^{2} - 2 \sqrt{3}
a = 4 \sqrt{3}  \\ b = 5 \\ c = 2 \sqrt{3}
Let,
 \alpha  =   \frac{ \sqrt{3} }{4}  \:  \: and \:  \:  \beta  =  \frac{2}{ \sqrt{3} }
 \alpha  +  \beta  =  -  \frac{b}{a}  \\  =  >  \:  \frac{ \sqrt{3} }{4}  +  \frac{2}{ \sqrt{3} }  =   \frac{ - 5}{4 \sqrt{3} }  \\  =  >  \frac{3 - 8}{4 \sqrt{3} }  =  \frac{ - 5}{4 \sqrt{3} }  \\  =  >   \frac{ - 5}{ 4 \sqrt{3}  }  =  \frac{ - 5}{4 \sqrt{3} }
And
 \alpha  \beta  =  \frac{c}{a} \\  =  >  \frac{ \sqrt{3} }{4}   \times  \frac{2}{ \sqrt{3} }  \\  =  >  \frac{1}{2}
Hence verified.

I HOPE IT'LL BE HELPFUL


Bianchi: I hope it is helpful to you, if not then sorry
Shanaya1000: don't worry
Shanaya1000: even I am thankful for your
Shanaya1000: help
Bianchi: it's my pleasure to help u
Shanaya1000: thanks
Bianchi: ur wlcm... :)
abhinavsingh56: hi
Similar questions