Math, asked by anugnya5, 11 months ago

find the zeros of the polynomial root2x^2-3x-2root2​

Answers

Answered by Anonymous
1

Answer:

-1/2...........................................

Answered by Anonymous
13

Answer:

\large\boxed{\sf{\sqrt{2}\:\:and\;\;\dfrac{1}{\sqrt{2}}}}

Step-by-step explanation:

Given quadratic Polynomial

 \sqrt{2}  {x}^{2}  - 3x - 2 \sqrt{2}

To find the roots

 \sqrt{2}  {x}^{2}   - 3x - 2 \sqrt{2}  = 0 \\  \\  =  >  \sqrt{2}  {x}^{2}  - 4x + x - 2  \sqrt{2}  = 0 \\  \\  =  >  \sqrt{2} x(x -  \sqrt{2} ) + 1( - 2 \sqrt{2} ) = 0 \\  \\  =  > (x -  \sqrt{2} )( \sqrt{2} x + 1) = 0 \\  \\  =  > x -  \sqrt{2}  = 0 \:  \:  \: and \:  \:  \:  \:  \sqrt{2} x + 1 = 0 \\  \\  =  > x =  \sqrt{2}  \:  \:  \:  \: and \:  \:  \:  \: x =  -  \frac{1}{ \sqrt{2} }

Hence the roots are √2 and 1/√2

Similar questions