Math, asked by Ashwin7875, 1 year ago

Find the zeros of the polynomial x^3-5x^2-16x+80 if two of its zeroes are equal in magnitude but opposite in sign

Answers

Answered by Ajmi
1
Hey mate here is your answer...!!!!

HOPE IT HELPS...

If it helps you plz mark me as brainlist
Attachments:
Answered by SwiftTeller
212

Appropriate Question:

 \sf{find  \: the \:  zeroes \:  of \:  the \:  polynomial \:  p(x) = x^3 -5x^2 - 16x + 80, if \:  it s  \: two  \: zeroes \:  are \:  equal  \: in  \: magnitude  \: but  \: opposite  \: in  \: sign.}

Solution:

 \bf{we \: have \: p(x) =  {x}^{3} -  {5x}^{2}  - 16x + 80 }

 \sf{let \: one \: zero \: be \:  \alpha .then, \: another \: zero( \beta ) =  -  \alpha }

Now,

 \bf{ \alpha  +  \beta  +  \gamma  =  \frac{ - b}{a} } \\  : \implies  \bf{ \alpha  + ( -  \alpha ) \gamma  =  \frac{ -(  - 5)}{1} } \\ : \implies  \bf{ \gamma  = 5 }   \:   \  \:  \:  \:  \:  \: \fbox {(1)} \\

Also,

: \implies  \bf{ \alpha  \beta  \gamma  =  \frac{ - d}{a} } \\ : \implies  \bf{ \alpha ( -  \alpha ) \gamma  =  - 80} \\ : \implies  \bf{ { \alpha }^{2} \gamma  =  - 80 } \\ : \implies  \bf{ { -  \alpha }^{2} \times 5 =  - 80  } \\ : \implies  \bf{  { -  \alpha }^{2}  =  \frac{ - 80}{5} } \\ : \implies  \bf{ { -  \alpha }^{2} =  - 16 } \\ : \implies  \bf{  { \alpha }^{2} = 16  }   \\ : \implies  \bf{ \alpha  =  \pm4}

  \pink{\mathbb{CASE  \: 1} }\leadsto \mathcal{ WHEN  \:  \alpha  =  + 4} \\ \mathcal{THEN,   \: \beta =  - 4 } \\  \mathfrak  {(  \orange{\because} \red{  \alpha  \: and \:  \beta are \: equal \: in \: magnitude \: but \: opposite \: in \: sign})} \\  \mathcal{So, \:  ZEROS  \: ARE  : 4,-4,5.}

  \pink{\mathbb{CASE  \: 2} }\leadsto \mathcal{ WHEN \:  \alpha  =  - 4. } \\ \mathcal{THEN,   \: \beta =   4  \:  \:  AND   \:  \: \gamma  = 5} \\  \mathcal{So, \:  ZEROS  \: ARE  : -4,4 \: AND \: 5.}

Similar questions