Math, asked by saurav782, 1 year ago

find the zeros of the polynomial xsqare +x-12 and verify the relation between the zeros and Co efficient of the polynomial

Answers

Answered by vivekyadav73
1
x=0

x-12=0
x=12
now,
coefficient is=0
Answered by Divyaalia
5

hey \: mate \: here \: is \: your \: answer...
________________________________

 {x}^{2}  + x - 12 \\  {x}^{2} +  (4 - 3)x - 12 \\  {x}^{2}   + 4x - 3x - 12 \\ x(x + 4) - 3(x + 4) \\ (x - 3)(x + 4) \\  \\ x - 3 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x + 4 = 0 \\  \:  \:  \:  \:  \:  \:  \:  \: x =  3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  x =  - 4


 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: verification


sum \: of \: zeros =  \frac{ - b}{a} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \: 3 + ( - 4) =  \frac{ - (  1)}{1}   \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 3 - 4 =  - 1 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - 1 =  - 1


product \: of \: zeros =  \frac{c}{a}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 3  \times  - 4 =  \frac{ - 12}{1}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - 12 =  - 12


hence \: verified...

________________________________

hope \: it \: helps.....

saurav782: oo
vivekyadav73: nothing
vivekyadav73: u much answer
saurav782: your answer helped me
saurav782: happy Friendship Day
saurav782: thanks
Similar questions