Math, asked by ragavidurga25, 10 months ago

find the zeros of the polynomials and verify the relationship between zeroes and its coefficient 3xsquare +4x-4​

Answers

Answered by SarcasticL0ve
2

\star\;\;{\underline{\underline{\frak \pink{GiVeN:-}}}}

  • p(x) = 3x² + 4x + 4

\star\;\;{\underline{\underline{\frak \pink{To\;Find:-}}}}

  • Zeroes of polynomial and to verify relationship b/w zeroes and coefficient.

\star\;\;{\underline{\underline{\frak \red{SolutiOn:-}}}}

\normalsize{\underline{\underline{\sf{\dag\;Using\;middle\;term\; splitting\;method}}}}

:\implies 3x² + 4x - 4

:\implies 3x² + 6x - 2x - 4

:\implies 3x(x + 2) - 2(x + 2)

:\implies (3x - 2)(x + 2)

Therefore, zeroes are:-

:\implies (3x - 2) = 0

{\boxed{\sf{\red{\leadsto \; x = \dfrac{2}{3}}}}}

And

:\implies (x + 2) = 0

{\boxed{\sf{\red{\leadsto \; x = - 2}}}}

Let \sf \alpha = \dfrac{2}{3}

Let \sf \beta = - 2

\rule{200}3

\dag\;\;\normalsize{\underline{\underline{\sf{\purple{Verification:-}}}}}

Relationship b/w zeroes and coefficient:-

We know that,

Sum of zereos (  \alpha + \beta ) =  \dfrac{-b}{a}

\dashrightarrow\sf -2 + \dfrac{2}{3} = \dfrac{-4}{3}

\dashrightarrow\sf \underbrace{ \dfrac{-4}{3} = \dfrac{-4}{3}}_{LHS = RHS}

Product of zereos (  \alpha \beta ) =  \dfrac{c}{a}

\dashrightarrow\sf -2 \times \dfrac{2}{3} = \dfrac{-4}{3}

\dashrightarrow\sf \underbrace{ \dfrac{-4}{3} = \dfrac{-4}{3}}_{LHS = RHS}

\dag\;\;\normalsize{\underline{\underline{\sf{\pink{Hence\; Verified!!}}}}}

\rule{200}3

Similar questions