find the zeros of the quadratic equation
![f(x) = \frac{x {}^{2} }{a} + \frac{b}{ac} x + \frac{x}{b} - \frac{1}{c} f(x) = \frac{x {}^{2} }{a} + \frac{b}{ac} x + \frac{x}{b} - \frac{1}{c}](https://tex.z-dn.net/?f=f%28x%29+%3D++%5Cfrac%7Bx+%7B%7D%5E%7B2%7D+%7D%7Ba%7D++%2B++%5Cfrac%7Bb%7D%7Bac%7D+x+%2B++%5Cfrac%7Bx%7D%7Bb%7D++-++%5Cfrac%7B1%7D%7Bc%7D+)
pls explain the full answer
correct explanation i will mark the brainliest
Answers
Answered by
1
x²/a + (b/ac)*x + x/b - 1/c = 0
x²/a + x(b/ac + 1/b) - 1/c = 0
=> x²/a + x((b²+ac) /abc) -1/c = 0
=> bc(x²) + x(b²+ac) -ab = 0
=>x = -(b²+ac) +√(b^4 + 2ab²c +a²c² - 4ab²c) /2bc
=> x = -(b²+ac) + √(b²-ac) ² / 2bc
=> x= [ -(b²+ac) + (b²-ac) ]/2bc
=> x = [ -b²+b²-ac-ac ] / 2bc
=> x = -2ac/2bc
=> x = -a/b
=> x = [ -b² +ac -b² +ac]/2bc
=> x =[ -2b²+2ac ]/2bc
=> x =(-b²+ac) /bc
=> x = -b/c + a/b
two zeros x = -a/b , -b/c+a/b
Similar questions