Math, asked by dummy1920, 9 months ago

Find the zeros of the quadratic polynomial 2 root 3 x square minus 5 x plus root 3 and verify the relationship between the zeros and the coefficients.

Answers

Answered by SarcasticL0ve
6

\star\;\normalsize{\underline{\underline{\frak \pink{GivEn:-}}}}

  • \normalsize\sf p(x) = 2 \sqrt{3}x^2 - 5x + \sqrt{3}

\star\;\normalsize{\underline{\underline{\frak \pink{To\;Find:-}}}}

  • Zeroes of polynomial and to verify relationship b/w zeroes and the coefficient.

\star\;\normalsize{\underline{\underline{\frak \red{Solution:-}}}}

\;\;\;\;\;\;\;\;\;\normalsize\sf {\underline{2 \sqrt{3}x^2 - 5x + \sqrt{3} = 0}} \\\\ :\implies \normalsize\sf 2 \sqrt{3}x^2 - 2x - 3x + \sqrt{3} = 0  \\\\ :\implies \normalsize\sf 2 \sqrt{3}x^2 - 2x - 3x + \sqrt{3} = 0 \\\\ :\implies \normalsize\sf 2x( \sqrt{3}x - 1) - \sqrt{3}( \sqrt{3}x - 1) \\\\ :\implies \normalsize\sf (2x - \sqrt{3})( \sqrt{3}x - 1) \\\\ :\implies \normalsize\sf either\; (2x - \sqrt{3}) or ( \sqrt{3}x - 1) \; is\;equal\;to\;zero \\\\ :\implies \normalsize\sf \therefore x = \dfrac{ \sqrt{3}}{2} and \dfrac{1}{ \sqrt{3}}

\normalsize\sf Let's \; \dfrac{ \sqrt{3}}{2}\;be\; \alpha \;and\; \dfrac{ \sqrt{1}}{ \sqrt{3}}\;be\; \beta.

 \rule{200}{3}

\star\;\normalsize{\underline{\underline{\frak \purple{Verification:-}}}}

  • Relationship b/w zeroes and the coefficient.

\star\;\normalsize\sf {\underline{Sum\;of\;zeroes\;( \alpha + \beta):-}} \;  \bf{ \dfrac{-b}{a}} \\\\ \leadsto \normalsize\sf \bigg( \dfrac{ \sqrt{3}}{2} + \dfrac{1}{ \sqrt{3}} \bigg) = - \bigg( \dfrac{-5}{2 \sqrt{3}} \bigg) \\\\ \leadsto \normalsize\sf \dfrac{3 + 2}{2 \sqrt{3}} = \dfrac{5}{2 \sqrt{3}} \\\\ \leadsto \normalsize\sf \underbrace{ \dfrac{5}{2 \sqrt{3}} = \dfrac{5}{2 \sqrt{3}}}_{LHS = RHS}

\star\;\normalsize\sf {\underline{Product\;of\;zeroes\;( \alpha \beta):-}} \;  \bf{ \dfrac{c}{a}} \\\\ \leadsto \normalsize\sf \bigg( \dfrac{ \sqrt{3}}{2} \times \dfrac{1}{ \sqrt{3}} \bigg) = \dfrac{1}{2} \\\\ \leadsto\normalsize\sf \dfrac{ \cancel{ \sqrt{3}}}{2 \cancel{ \sqrt{3}}} = \dfrac{1}{2} \\\\ \leadsto\normalsize\sf \underbrace{ \dfrac{1}{2} = \dfrac{1}{2}}_{LHS = RHS}

\normalsize{\underline{\underline{\sf{\red{\dag\; Hence\; Verified!!}}}}}

 \rule{200}{3}

Similar questions