Math, asked by skyadav611977panxrb, 1 year ago

find the zeros of the quadratic polynomial 2x square -9 - 3x and verify the relationship between the zeros and the coefficient

Answers

Answered by pinquancaro
57

Answer:

The zeros of the equation are x=-\frac{3}{2},3

Step-by-step explanation:

Given : Equation 2x^2-9-3x

To find : The zeros of the quadratic polynomial and verify the relationship between the zeros and the coefficient ?

Solution :

Quadratic equation 2x^2-3x-9=0

On comparing with general equation, a=2,b=-3,c=-9

Applying middle term split,

2x^2-6x+3x-9=0

2x(x-3)+3(x-3)=0

(2x+3)(x-3)=0

(2x+3)=0,(x-3)=0

x=-\frac{3}{2},x=3

The zeros of the equation are x=-\frac{3}{2},3

The relationship between the zeros and the coefficient,

Sum of the zeros, \alpha+\beta=-\frac{b}{a}

-\frac{3}{2}+3=-\frac{-3}{2}

\frac{-3+6}{2}=\frac{3}{2}

\frac{3}{2}=\frac{3}{2}

Verified.

Product of the zeros, \alpha\beta=\frac{c}{a}

-\frac{3}{2}\times 3=\frac{-9}{2}

-\frac{9}{2}=-\frac{9}{2}

Verified.

Answered by mysticd
18

Answer:

-3 \:and \:\frac{3}{2}\:are \\ zeroes \:of \:given \: polynomial.

Step-by-step explanation:

We have 2x²-3x-9

= 2x²+6x-3x-9

= 2x(x+3)-3(x+3)

= (x+3)(2x-3)

So, the value of 2x²-3x-9 is zero when x+3=0 or 2x-3 = 0

i.e ., when x = -3 Or x = 3/2

Therefore,

The zeroes of 2x²-3x-9 are -3 and 3/2.

Now, sum \:of \:the \: zeroes\\=-3+\frac{3}{2}\\=\frac{-6+3}{2}\\=\frac{-3}{2}\\=\frac{-(Coefficient\:of \:x)}{coefficient\:of \:x^{2}}

 product\:of \:the \: zeroes\\=-3\times \frac{3}{2}\\=\frac{-9}{2}\\=\frac{constant\:term}{coefficient\:of \:x^{2}}

•••♪

Similar questions