Math, asked by shahidmamon82, 3 months ago


Find the zeros of the quadratic polynomial 6x2 - 3 - 7x and verify the
relationship between the zeroes and the coefficients.​

Answers

Answered by ShírIey
109

\star\;\bold{\underline{\sf{\pink{Given\: Polynomial\: : \: 6x^2 - 3 - 7x}}}}

⠀⠀⠀

:\implies\sf 6x^2 - 7x - 3 = 0 \\\\\\:\implies\sf 6x^2 - 9x + 2x - 3 = 0  \\\\\\:\implies\sf  3x(2x - 3) + 1(2x - 3) = 0 \\\\\\:\implies\sf  (2x - 3) (3x + 1) = 0 \\\\\\:\implies{\underline{\boxed{\frak{\pink{x = \dfrac{3}{2} \; \&\; \dfrac{-1}{\;3}}}}}}\;\bigstar

\sf{\therefore\; Zeroes\; of \; the \: Given \; polynomial \; are \; \dfrac{3}{2} \:\&\; \dfrac{-1 \:   }{\; \: 3 \: }.}

\rule{250px}{.3ex}

\bf{\dag} \:  \: \underline{\textsf{Relation b/w Coefficients \& Zeroes \:  :}}⠀⠀

⠀⠀⠀⠀⠀

{\qquad\maltese\:\:\textsf{Sum of Zeroes :}} \\\\\dashrightarrow\sf\:\:\alpha +\beta= \dfrac{ - \:b \:  \:  \: }{ \:  \:  \: a \:  \:  \:}\\\\\\\dashrightarrow\sf \bigg(\dfrac{3}{2}\bigg) + \bigg(\dfrac{-1}{ \:  \: 3}\bigg) =  - \dfrac{-7}{ \:  \: 6} \\\\\\\dashrightarrow{\underline{\boxed{\frak{\dfrac{7}{6} =  \dfrac{7}{6}}}}}

⠀⠀⠀

{\qquad\maltese\:\:\textsf{Product of Zeroes :}}\\\\\dashrightarrow\sf\:\:\alpha\beta=\dfrac{c}{a}\\\\\\\dashrightarrow\sf \bigg(\dfrac{3}{2}\bigg) \times \bigg(\dfrac{-1 \:  \: }{ \:  \: 3 \:  \: }\bigg) = \dfrac{-3 \:  \: }{ \:  \: 6 \:  \: } \\\\\\\dashrightarrow{\underline{\boxed{\frak{\dfrac{-1}{\;2} = \dfrac{-1}{\;2}}}}}

⠀⠀⠀

\qquad\quad\therefore{\underline{\textsf{\textbf{Hence, Verified!}}}}

Answered by Sen0rita
69

Given : A polynomial 6x² - 7x - 3.

Need to find : It's zeroes and relationship between the zeroes and the coefficients.

⠀⠀⠀⠀⠀⠀____________________

Firstly, we'll find the zeroes of the quadratic polynomial.

 \:  \:

\sf:\implies \: 6x {}^{2}  - 7x - 3 = 0 \\  \\  \\ \sf:\implies \: 6x {}^{2}  - 9x + 2x - 3 = 0 \\  \\  \\ \sf:\implies \: 3x(2x - 3) + 1(2x - 3) = 0 \\  \\  \\ \sf:\implies \: (3x + 1)(2x - 3) = 0 \\  \\  \\ \sf:\implies \: \underline{\boxed{\sf\purple{x =  \frac{ - 1}{3}, \frac{3}{2}  }}}  \: \bigstar

 \:  \:

 \sf {\underline{ \bigstar \: Verification \:  :}}

 \:  \:

 \bold{ \underline{sum \: of \: zeroes \:  : }}

 \:  \:

 \sf :\implies \: α+β =  \dfrac{ - b}{a}  \\  \\  \\  \sf :\implies \:   \frac{ - 1}{3}  +  \frac{3}{2}  \\  \\  \\  \sf :\implies \:  \frac{ - 2 + 9}{6}  \\  \\  \\  \sf :\implies \: \underline{\boxed{\sf\purple{ \frac{7}{6} =  \frac{7}{6}  }}} \:  \bigstar

 \:  \:

 \bold{ \underline{ product \: of \: zeroes \:  : }}

 \:  \:

 \sf : \implies \: α×β =  \dfrac{c}{a}  \\  \\  \\  \sf : \implies \:  \frac{ - 1}{3}  \times  \frac{3}{2}  \\  \\  \\  \sf : \implies \:  \underline{\boxed{\sf\purple{ \frac{ - 3}{6}  =  \frac{ - 3}{6} }}} \:  \bigstar

 \:  \:

\sf\therefore{\underline{Hence, \: verified \: !}}

Similar questions