find the zeros of the quadratic polynomial 8 x square - 21 - 22 x and verify the relationship between zeroes and coefficients of the polynomials
Answers
Answered by
32
8x^2-22x-21=0
8x^2-28x+6x-21=0
4x(2x-7)+3(2x-7)=0
(4x+3)(2x-7)=0
either or
4x+3=0 2x-7=0
4x=-3 2x=7
x=-3/4 x=7/2
here a=8 b=-22 c=-21 α=-3/4 β=7/2
α+β=-b/a αβ=c/a
-3/4+7/2=-(-22/8) -3/4*7/2=-21/8
-3/4+14/4=(22/8) -21/8=-21/8
11/4=11/4
hence verified
8x^2-28x+6x-21=0
4x(2x-7)+3(2x-7)=0
(4x+3)(2x-7)=0
either or
4x+3=0 2x-7=0
4x=-3 2x=7
x=-3/4 x=7/2
here a=8 b=-22 c=-21 α=-3/4 β=7/2
α+β=-b/a αβ=c/a
-3/4+7/2=-(-22/8) -3/4*7/2=-21/8
-3/4+14/4=(22/8) -21/8=-21/8
11/4=11/4
hence verified
Answered by
26
Hey!
_______________
8x^2 - 21 - 22x
8x^2 - 22x - 21
8x^2 - 28x + 6x - 22x
(8x^2 - 28x) + (6x - 22x)
4x ( 2x - 7) + 3 (2x - 7)
(4x + 3) (2x - 7)
Now,
4x + 3 = 0
x = -3/4
2x - 7 = 0
x = 7/2
Comparing 8x^2 - 22x - 21 with ax^2 + bx + c
a = 8 , b = -22 , c = -21
Alpha ( @ ) = -3/4
Beta ( ß ) = 7/2
Sum of zeroes ( @ + ß ) = - b/a
-3/4 + 7/2 = - ( - 22) / 8
-3 + 14 /4= 22/8
11/4 = 11/4
Product of zeroes ( @ × ß ) = c / a
- 3/4 × 7/2 = -21 / 8
-21 / 8 = -21/8
Hence, Verified!
_______________
Hope it helps...!!!
_______________
8x^2 - 21 - 22x
8x^2 - 22x - 21
8x^2 - 28x + 6x - 22x
(8x^2 - 28x) + (6x - 22x)
4x ( 2x - 7) + 3 (2x - 7)
(4x + 3) (2x - 7)
Now,
4x + 3 = 0
x = -3/4
2x - 7 = 0
x = 7/2
Comparing 8x^2 - 22x - 21 with ax^2 + bx + c
a = 8 , b = -22 , c = -21
Alpha ( @ ) = -3/4
Beta ( ß ) = 7/2
Sum of zeroes ( @ + ß ) = - b/a
-3/4 + 7/2 = - ( - 22) / 8
-3 + 14 /4= 22/8
11/4 = 11/4
Product of zeroes ( @ × ß ) = c / a
- 3/4 × 7/2 = -21 / 8
-21 / 8 = -21/8
Hence, Verified!
_______________
Hope it helps...!!!
Anonymous:
thanks
Similar questions