Math, asked by nithu10, 1 year ago

find the zeros of the quadratic polynomial and verify the relationship between the zeroes and co-efficents p(x)
4x {}^{2}  - 24x + 36

Answers

Answered by HimaniVarshney
1

here is your answer...

4x ^{2}  - 24x + 36 = 0 \\ x ^{2}  - 6x + 9 = 0 \\ x ^{2}  - (3 + 3)x + 9 = 0 \\ x ^{2}  - 3x - 3x + 9 = 0 \\ x(x - 3) - 3(x  - 3) = 0 \\ (x - 3)(x - 3) = 0 \\  \\ zeroes \: are \: equal \: both \:  \: 3

Now Relation....

a=4

b= -24

c=36

 \alpha  +  \beta  =  \frac{ - b}{a} \\ 3 + 3 =  \frac{ - ( - 24)}{4}   \\ 6 = 6

 \alpha  \beta  =  \frac{c}{a}  \\ 3 \times 3 =  \frac{36}{4}  \\ 9 = 9

Thanks..

hope it helps you

Answered by silentlover45
4

\underline\mathfrak{Given:-}

  • 4x² - 24x + 36

\underline\mathfrak{To \: \: Find:-}

  • Find the zeroes are coefficients ......?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: P \: {(x)} \: \: = \: \: {4x}^{2} \: - \: {24x} \: + \: {36}

\: \: \: \: \: \leadsto \: \: {4x}^{2} \: - \: {24x} \: + \: {36}

\: \: \: \: \: \leadsto \: \: {4x}^{2} \: - \: {16x} \: - \: {9x} \: + \: {36}

\: \: \: \: \: \leadsto \: \: {4x} \: {({x} \: - \: {4})} \: - \: {9} \: {({x} \: - \: {4})}

\: \: \: \: \: \leadsto \: \: {({4x} \: - \: {9})} \: \: \: {({x} \: - \: {4})}

\: \: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: \frac{9}{4} \: \: \: and \: \: \: {x} \: \: = \: \: {4}

\: \: \: \: \: \: \: \: \: {\alpha} \: \: = \: \: \frac{9}{4} \: \: \: and \: \: \: {\beta} \: \: = \: \: {4}

\underline\mathfrak{Verification:-}

4x² - 24x + 36

  • a = 4
  • b = -24
  • c = 36

\: \: \: \: \: \therefore {Sum \: \: of \: \: zeroes} \: \: = \: \: \frac{ \: - \: coefficient \: \: of \: \: x}{coefficient \: \: of \: \: {x}^{2}}

\: \: \: \: \: \leadsto \: \: {\alpha} \: + \: {\beta}  \: \: = \: \: \frac{-b}{a}

\: \: \: \: \: \leadsto \: \: \frac{9}{4} \: + \: {4}  \: \: = \: \: - \: \frac{(-24)}{4}

\: \: \: \: \: \leadsto \: \: \frac{{9} \: + \: {16}}{4} \: \: = \: \: \frac{24}{4}

\: \: \: \: \: \leadsto \: \: \frac{24}{4}  \: \: = \: \: \frac{24}{4}

\: \: \: \: \: \therefore {Product \: \: of \: \: zeroes} \: \: = \: \: \frac{constant \: \: term}{coefficient \: \: of \: \: {x}^{2}}

\: \: \: \: \: \leadsto \: \: {\alpha} \: {\beta}  \: \: = \: \: \frac{c}{a}

\: \: \: \: \: \leadsto \: \: \frac{9}{\cancel{4}} \: \times \: \cancel{4}  \: \: = \: \: \cancel{\frac{36}{4}}

\: \: \: \: \: \leadsto \: \: {9} \: \: = \: \: {9}

Verified.

Similar questions