Math, asked by pradeepsareen4801, 2 months ago

find the zeros of the quadratic polynomial x2+x-30​

Answers

Answered by amansharma264
8

EXPLANATION.

Quadratic equation.

⇒ x² + x - 30.

As we know that,

Factorizes the equation into middle term splits, we get.

⇒ x² + 6x - 5x - 30 = 0.

⇒ x(x + 6) - 5(x + 6) = 0.

⇒ (x - 5)(x + 6) = 0.

⇒ x = 5 and x = -6.

                                                                                                                         

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by PopularAnswerer01
71

Question:-

  • Find the zeroes of the quadratic polynomial x² + x - 30

To Find:-

  • Find the value of x

Solution:-

Now ,

We have to factorize the equation to get the value of x:-

\sf\longrightarrow \: { x }^{ 2 } + x - 30

\sf\longrightarrow \: { x }^{ 2 } + 6x - 5x - 30

\sf\longrightarrow \: x( x + 6 ) - 5( x + 6 )

\sf\longrightarrow \: ( x - 5 ) ( x + 6 )

\sf\longrightarrow \: x = 5 ; - 6

Hence ,

  • The value of x is 5 , - 6
Similar questions