Math, asked by anagha20, 1 year ago

Find the zeros of x square + 1/6 -2 and verify the relation between zeros and their coefficient​

Answers

Answered by LovelyG
5

Answer:

\large{\underline{\boxed{\sf x =   - \frac{ 3}{2}  \:  \: or \:  \: x =  \frac{4}{3} }}}

Step-by-step explanation:

Given polynomial -

 \sf  {x}^{2}  +  \frac{1}{6} x - 2 = 0 \\  \\ \implies \sf  \frac{6x {}^{2} + x - 12 }{6}  = 0 \\  \\ \implies \sf 6x {}^{2}  + x - 12 = 0

We can solve it, by splitting the middle term.

\implies \sf 6x {}^{2}  + x - 12 = 0 \\  \\ \implies \sf 6x {}^{2}  + 9x - 8x - 12 = 0 \\  \\ \implies \sf 3x(2x + 3) - 4(2x + 3) = 0 \\  \\ \implies \sf (2x + 3)(3x - 4) = 0

By zero product rule -

\implies \sf (2x + 3 )= 0 \: or \: (3x - 4) = 0 \\  \\ \implies \bf x =   - \frac{ 3}{2}  \:  \: or \:  \: x =  \frac{4}{3}

Hence, the zeroes are  \bf x =   - \frac{ 3}{2}  \:   or \:  \frac{4}{3}

_____________________________________

Verification of relationships:

 \bf Sum  \: of \: zeros =  \frac{ - (coefficient \: of \: x)}{coefficient \: of \: {x}^{2}  } \\  \\ \implies  -  \frac{3}{2}  +  \frac{4}{3}  =  \frac{ - ( \frac{1}{6}) }{1}  \\  \\ \implies  \frac{ - 9 + 8}{6}  =    - \frac{1}{6}  \\  \\ \implies  -  \frac{1}{6}  =  -  \frac{1}{6} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \tt verified!}

Now,

 \bf Product \: of\: Zeros = \frac{Constant\:term}{Coefficient\: of \:x^2}

 \implies  -  \frac{3}{2}  \times  \frac{4}{3}  =  \frac{ - 2}{1}  \\  \\ \implies  \frac{ - 12}{6}  =  - 2 \\  \\ \implies  - 2 =  - 2 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \tt verified!}

Similar questions