Math, asked by saurabhgupta454545, 7 months ago

find the zeros of x2 _15 std 10​

Answers

Answered by Anonymous
6

Answer:

➡ -√15 and √15

Step-by-step explanation:

 {x}^{2}  - 15

let a be x and b be √15

therefore

Using the identity

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

we get

x^2 - 15

=(x-√15)(x+√15)

=> (x-√15)=0

=> x = √15

similarly,

x also equals to -√15

and hence zeroes are

-√15 and √15

Answered by Anonymous
26

Answer:

Zeroes=-√15 and +√15

Step-by-step explanation:

x²-15

15=(√15)²

x²-(√15)²

    ↓

It is in the form of a^{2}-b^{2} and we know that  a^{2}-b^{2}=(a+b)(a-b)

x²-(√15)²=(x+√15)(x-√15)=0

x+√15=0                         x-√15=0

        x=0-√15                         x=0+√15

        x=-√15                               x=+√15

∝=-√15,β=+√15

x²-0x-15⇒a=1,b=-0 and c=-15

Sum of zeroes(∝+β)=-b/a

               (-√15+√15)=-(-0)/1

                               0=0

Product of zeroes(∝β)=c/a

                 (-√15)(+√15)=-15/1

                                 -15=-15

Please mark it as brainlist answer

Similar questions