Math, asked by chvijayarjy, 3 months ago

find thematic of the sales per day in a fair Price shop in a week. $10000,$10250,$9865,$10110​

Answers

Answered by aastha12349
5

Answer:

Given that, Perimeter of a rectangle is 230 cm. & the length of rectangle is 70 cm.

We've to find out the breadth of the rectangle.

❍ So Let say, that the breadth of the rectangle be x.

As we know that,

\bigstar\;{\underline{\boxed{\frak{Perimeter_{\:(rectangle)} = 2\Big(length + breadth\Big)}}}} ⠀⠀⠀

⠀⠀⠀

\frak{we\;have}\begin{cases}\sf{\:\; \: Breadth = \bf{x\;cm}}\\\sf{ \: \: \: Length = \bf{70 \;cm}}\\\sf{ \: \: \: Perimeter = \bf{230\;cm}}\end{cases} ⠀⠀⠀⠀⠀⠀

⠀⠀⠀

⠀⠀⠀\underline{\bf{\dag} \:\mathfrak{Substituting\;given\;values\;in\;formula\;:}}

⠀⠀⠀

\dashrightarrow\sf 230 = 2\Big\{70 + x\Big\} \\\\\\\dashrightarrow\sf 230 = 140 + 2x\\\\\\\dashrightarrow\sf  2x = 230 - 140\\\\\\\dashrightarrow\sf 2x = 90\\\\\\\dashrightarrow\sf x = \cancel\dfrac{90}{2} \\\\\\\dashrightarrow\underline{\boxed{\pmb{\frak{\pink{x = 45}}}}}\;\bigstar

⠀⠀⠀

Therefore, the Length and Breadth of the rectangle are 70 cm & 45 cm respectively.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

¤ Now, we know both dimensions of the rectangle. We can find out the area of rectangle by using the formula given below —

⠀⠀⠀

\twoheadrightarrow\sf Area = \Big\{Length \times Breadth\Big\} \\\\\\\twoheadrightarrow\sf Area = 45 \times 70 \\\\\\\twoheadrightarrow\underline{\boxed{\pmb{\frak{\purple{ Area = 3150\;cm^2}}}}}\;\bigstar

⠀⠀

\therefore{\underline{\sf{Hence, \; area\;of\;the\;given\; rectangle\;is\;\bf{3150\;cm^2}.}}}

Answered by upsales
2

Answer:

Given that, Perimeter of a rectangle is 230 cm. & the length of rectangle is 70 cm.

We've to find out the breadth of the rectangle.

❍ So Let say, that the breadth of the rectangle be x.

As we know that,

\bigstar\;{\underline{\boxed{\frak{Perimeter_{\:(rectangle)} = 2\Big(length + breadth\Big)}}}}★Perimeter(rectangle)=2(length+breadth) ⠀⠀⠀

⠀⠀⠀

\begin{gathered}\frak{we\;have}\begin{cases}\sf{\:\; \: Breadth = \bf{x\;cm}}\\\sf{ \: \: \: Length = \bf{70 \;cm}}\\\sf{ \: \: \: Perimeter = \bf{230\;cm}}\end{cases}\end{gathered}wehave⎩⎪⎪⎨⎪⎪⎧Breadth=xcmLength=70cmPerimeter=230cm ⠀⠀⠀⠀⠀⠀

⠀⠀⠀

⠀⠀⠀\underline{\bf{\dag} \:\mathfrak{Substituting\;given\;values\;in\;formula\;:}}†Substitutinggivenvaluesinformula: ⠀

⠀⠀⠀

\begin{gathered}\dashrightarrow\sf 230 = 2\Big\{70 + x\Big\} \\\\\\\dashrightarrow\sf 230 = 140 + 2x\\\\\\\dashrightarrow\sf 2x = 230 - 140\\\\\\\dashrightarrow\sf 2x = 90\\\\\\\dashrightarrow\sf x = \cancel\dfrac{90}{2} \\\\\\\dashrightarrow\underline{\boxed{\pmb{\frak{\pink{x = 45}}}}}\;\bigstar\end{gathered}⇢230=2{70+x}⇢230=140+2x⇢2x=230−140⇢2x=90⇢x=290⇢x=45x=45★

⠀⠀⠀

Therefore, the Length and Breadth of the rectangle are 70 cm & 45 cm respectively.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

¤ Now, we know both dimensions of the rectangle. We can find out the area of rectangle by using the formula given below —

⠀⠀⠀

\begin{gathered}\twoheadrightarrow\sf Area = \Big\{Length \times Breadth\Big\} \\\\\\\twoheadrightarrow\sf Area = 45 \times 70 \\\\\\\twoheadrightarrow\underline{\boxed{\pmb{\frak{\purple{ Area = 3150\;cm^2}}}}}\;\bigstar\end{gathered}↠Area={Length×Breadth}↠Area=45×70↠Area=3150cm2Area=3150cm2★

⠀⠀

\therefore{\underline{\sf{Hence, \; area\;of\;the\;given\; rectangle\;is\;\bf{3150\;cm^2}.}}}∴Hence,areaofthegivenrectangleis3150cm2.

Similar questions