Math, asked by trishanagamani, 2 months ago

The vertices of a triangle Pqr are P(-3,2) (-1,-4) and R(5,2).
If x and y are the midpoints of PQ and PR Respectively.
shows that 2xy
= QR​

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\textsf{The vertices of triangle PQR are P(-3,2), Q(-1-4) and R(5,2)}

\textsf{x and y are the midpoints of PQ and PR}

\underline{\textbf{To prove:}}

\mathsf{2\;XY=QR}

\underline{\textbf{Solution:}}

\underline{\textsf{Concept used:}}

\mathsf{The\;distance\;between\;(x_1,y_1)\;and\;(x_2,y_2)\;is}

\boxed{\mathsf{d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}}

\textsf{X = Midpoint of PR}

\mathsf{X=\left(\dfrac{-3-1}{2},\dfrac{2-4}{2}\right)}

\mathsf{X=\left(\dfrac{-4}{2},\dfrac{-2}{2}\right)}

\implies\mathsf{X=(-2,-1)}

\textsf{Y = Midpoint of PR}

\mathsf{Y=\left(\dfrac{-3+5}{2},\dfrac{2+2}{2}\right)}

\mathsf{Y=\left(\dfrac{2}{2},\dfrac{4}{2}\right)}

\implies\mathsf{Y=(1,2)}

\mathsf{QR=\sqrt{(-1-5)^2+(-4-2)^2}}

\mathsf{QR=\sqrt{(-6)^2+(-6)^2}}

\mathsf{QR=\sqrt{36+36}}

\mathsf{QR=\sqrt{72}}

\mathsf{QR=2\sqrt{18}}

\mathsf{XY=\sqrt{(-2-1)^2+(-1-2)^2}}

\mathsf{XY=\sqrt{(-3)^2+(-3)^2}}

\mathsf{XY=\sqrt{9+9}}

\mathsf{XY=\sqrt{18}}

\implies\boxed{\mathsf{2\,XY=QR}}

\underline{\textbf{Find more:}}

If A and B are the points (-2,3)and (-3,5) respectively then the distance 2AB

https://brainly.in/question/17492300  

Root 2 times the distance between (0,5) and (-5,0) is

https://brainly.in/question/15926388  

P(5,-3) and Q(-7,y) and PQ=13 units, find y​

https://brainly.in/question/15041779  

Find the distance between the point (-8/2,2) and (2/5,2)​

https://brainly.in/question/10709037

Similar questions