Math, asked by tyashwanthyashwanth9, 10 months ago

find thequadratic polynomial whose zeroes 2,-1​

Answers

Answered by Abhishek474241
4

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • zeroes of polynomial
  • 2 and -1

{\sf{\green{\underline{\large{To\:Verify}}}}}

  • polynomial

{\sf{\pink{\underline{\Large{Explanation}}}}}

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\tt\alpha{+}\beta=\frac{-b}{a}=2-1=1

&

\tt\alpha{\times}\beta{=}\frac{c}{a}=2\times{-1}=-2

From this we conclude that

a=1

b=-1

C=-2

ax²+bx+c

  • Making polynomial

x²-x-2

Additional Information

\tt\alpha{+}\beta{=}\dfrac{{1}}{1}

\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\tt\alpha{\times}\beta{=}\dfrac{-2}{1}

\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified


Anonymous: Perfect
Answered by Anonymous
86

Step-by-step explanation:

 \bf \underline{Question}

  • find thequadratic polynomial whose zeroes 2,-1

_______________________________

 \bf \underline{Given}

  • zeroes 2,-1

_______________________________

 \bf \underline{To\:Find}

  • find thequadratic polynomial

____________________________

 \bf \underline{Solve\to}

Supposed :-

  • A be the first zero i.e 2

  • b be the second i.e -1

Then,

 \sf\to \: a+b=(2 - 1)=1 \\ </p><p></p><p> \sf \to\: ab=2 \times (-1)=-2 \\ </p><p> \sf \to\: x^2+(a+b)x+ab \\ </p><p> \sf\to \: (X-2)(X+1)=X^2-2X+X-2 \\ </p><p> \sf\to \blue{X^2-X-2=0}

Hope it helps you


Anonymous: Nice one
Similar questions