Math, asked by karthikdodamani97, 2 months ago

find this this so urgent


the value of x on solving x/x-1+x-1/x=21/2 will be​

Answers

Answered by d2rajshree
1

Step-by-step explanation:

 \frac{x}{x - 1} +  \frac{x - 1}{x} =  \frac{21}{2}

 \frac{ {x}^{2} +  {(x - 1)}^{2}  }{x(x - 1)}  =  \frac{21}{2}

 \frac{ {x}^{2}  +  {x}^{2} - 2.x.1 +  {1}^{2} } { {x}^{2} - x }  =  \frac{21}{2}

 \frac{2 {x}^{2} - 2x + 1 }{ {x}^{2} - x } =  \frac{21}{2}

2(2 {x}^{2}  - 2x + 1) = 21( {x}^{2} - x)

4 {x}^{2} - 4x + 2= 21 {x}^{2} - 21x

4 {x}^{2} - 21 {x}^{2} - 4x + 21x + 2= 0

 - 17 {x}^{2} + 17x + 2 = 0

17 {x}^{2} - 17x - 2 = 0 \:  \: (multiplying \: both \: sides \: by \:  - )

Answered by Anonymous
1

 \bold\red{We  \: have \:   x^2+ \frac{1}{2} ^2=23}

 \bold\red{( \frac{x - 1}{x} )^2=x^2+ \frac{1}{x} ^2−2}

[= 23 - 2]</p><p>= 21</p><p>Taking square root on both sides, we get</p><p>[tex]\red( \frac{x - 1}{x} )= \sqrt{21}

 \bold\red{Thus,  \frac{x - 1}{x} = \sqrt{21}  \:  or \:  \sqrt{ -21} }

Similar questions