find three completive odd number what's sum is 45
Answers
What are the three consecutive odd numbers whose sum is 45?
Let n = a number and 2n = an even number, then ...
Let 2n + 1 = the first of three consecutive odd numbers.
Let 2n + 3 = the second of three consecutive numbers.
Let 2n + 5 = the third of three consecutive odd numbers.
Since it's given that the sum of our three consecutive odd numbers is 45, then we can write the following equation to be solved for the variable n:
(2n + 1) + (2n + 3) + (2n + 5) = 45
2n + 1 + 2n + 3 + 2n + 5 = 45
Collecting like-terms on the left, we get:
6n + 9 = 45
Now, subtracting 9 from both sides in order to begin isolating the unknown, n, on the left side:
6n + 9 - 9 = 45 - 9
6n + 0 = 36
6n = 36
Now, divide both sides by 6 in order to solve the equation for n:
(6n)/6 = 36/6
(6/6)n = 36/6
(1)n = 6
n = 6
Therefore, ...
2n + 1 = 2(6) + 1
= 12 + 1
= 13
2n + 3 = 2(6) + 3
= 12 + 3
= 15
2n + 5 = 2(6) + 5
= 12 + 5
= 17
CHECK:
(2n + 1) + (2n + 3) + (2n + 5) = 45
(13) + (15) + (17) = 45
13 + 15 + 17 = 45
45 = 45
Therefore, our three consecutive odd numbers are indeed 13, 15, and 17.
please folo me